Step |
Hyp |
Ref |
Expression |
1 |
|
eff1o.1 |
⊢ 𝑆 = ( ◡ ℑ “ ( - π (,] π ) ) |
2 |
|
pire |
⊢ π ∈ ℝ |
3 |
2
|
renegcli |
⊢ - π ∈ ℝ |
4 |
|
eqid |
⊢ ( 𝑤 ∈ ( - π (,] π ) ↦ ( exp ‘ ( i · 𝑤 ) ) ) = ( 𝑤 ∈ ( - π (,] π ) ↦ ( exp ‘ ( i · 𝑤 ) ) ) |
5 |
|
rexr |
⊢ ( - π ∈ ℝ → - π ∈ ℝ* ) |
6 |
|
iocssre |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( - π (,] π ) ⊆ ℝ ) |
7 |
5 2 6
|
sylancl |
⊢ ( - π ∈ ℝ → ( - π (,] π ) ⊆ ℝ ) |
8 |
|
picn |
⊢ π ∈ ℂ |
9 |
8
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
10 |
9
|
oveq2i |
⊢ ( - π + ( 2 · π ) ) = ( - π + ( π + π ) ) |
11 |
|
negpicn |
⊢ - π ∈ ℂ |
12 |
8 8
|
addcli |
⊢ ( π + π ) ∈ ℂ |
13 |
11 12
|
addcomi |
⊢ ( - π + ( π + π ) ) = ( ( π + π ) + - π ) |
14 |
12 8
|
negsubi |
⊢ ( ( π + π ) + - π ) = ( ( π + π ) − π ) |
15 |
8 8
|
pncan3oi |
⊢ ( ( π + π ) − π ) = π |
16 |
14 15
|
eqtri |
⊢ ( ( π + π ) + - π ) = π |
17 |
10 13 16
|
3eqtrri |
⊢ π = ( - π + ( 2 · π ) ) |
18 |
17
|
oveq2i |
⊢ ( - π (,] π ) = ( - π (,] ( - π + ( 2 · π ) ) ) |
19 |
18
|
efif1olem1 |
⊢ ( ( - π ∈ ℝ ∧ ( 𝑥 ∈ ( - π (,] π ) ∧ 𝑦 ∈ ( - π (,] π ) ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
20 |
18
|
efif1olem2 |
⊢ ( ( - π ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ ( - π (,] π ) ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
21 |
4 1 7 19 20
|
eff1olem |
⊢ ( - π ∈ ℝ → ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) ) |
22 |
3 21
|
ax-mp |
⊢ ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) |