Metamath Proof Explorer


Theorem eff1o

Description: The exponential function maps the set S , of complex numbers with imaginary part in the closed-above, open-below interval from -upi to pi one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Hypothesis eff1o.1 𝑆 = ( ℑ “ ( - π (,] π ) )
Assertion eff1o ( exp ↾ 𝑆 ) : 𝑆1-1-onto→ ( ℂ ∖ { 0 } )

Proof

Step Hyp Ref Expression
1 eff1o.1 𝑆 = ( ℑ “ ( - π (,] π ) )
2 pire π ∈ ℝ
3 2 renegcli - π ∈ ℝ
4 eqid ( 𝑤 ∈ ( - π (,] π ) ↦ ( exp ‘ ( i · 𝑤 ) ) ) = ( 𝑤 ∈ ( - π (,] π ) ↦ ( exp ‘ ( i · 𝑤 ) ) )
5 rexr ( - π ∈ ℝ → - π ∈ ℝ* )
6 iocssre ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( - π (,] π ) ⊆ ℝ )
7 5 2 6 sylancl ( - π ∈ ℝ → ( - π (,] π ) ⊆ ℝ )
8 picn π ∈ ℂ
9 8 2timesi ( 2 · π ) = ( π + π )
10 9 oveq2i ( - π + ( 2 · π ) ) = ( - π + ( π + π ) )
11 negpicn - π ∈ ℂ
12 8 8 addcli ( π + π ) ∈ ℂ
13 11 12 addcomi ( - π + ( π + π ) ) = ( ( π + π ) + - π )
14 12 8 negsubi ( ( π + π ) + - π ) = ( ( π + π ) − π )
15 8 8 pncan3oi ( ( π + π ) − π ) = π
16 14 15 eqtri ( ( π + π ) + - π ) = π
17 10 13 16 3eqtrri π = ( - π + ( 2 · π ) )
18 17 oveq2i ( - π (,] π ) = ( - π (,] ( - π + ( 2 · π ) ) )
19 18 efif1olem1 ( ( - π ∈ ℝ ∧ ( 𝑥 ∈ ( - π (,] π ) ∧ 𝑦 ∈ ( - π (,] π ) ) ) → ( abs ‘ ( 𝑥𝑦 ) ) < ( 2 · π ) )
20 18 efif1olem2 ( ( - π ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ ( - π (,] π ) ( ( 𝑧𝑦 ) / ( 2 · π ) ) ∈ ℤ )
21 4 1 7 19 20 eff1olem ( - π ∈ ℝ → ( exp ↾ 𝑆 ) : 𝑆1-1-onto→ ( ℂ ∖ { 0 } ) )
22 3 21 ax-mp ( exp ↾ 𝑆 ) : 𝑆1-1-onto→ ( ℂ ∖ { 0 } )