| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eff1olem.1 |
⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) |
| 2 |
|
eff1olem.2 |
⊢ 𝑆 = ( ◡ ℑ “ 𝐷 ) |
| 3 |
|
eff1olem.3 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 4 |
|
eff1olem.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
| 5 |
|
eff1olem.5 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
| 6 |
|
cnvimass |
⊢ ( ◡ ℑ “ 𝐷 ) ⊆ dom ℑ |
| 7 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 8 |
7
|
fdmi |
⊢ dom ℑ = ℂ |
| 9 |
8
|
eqcomi |
⊢ ℂ = dom ℑ |
| 10 |
6 2 9
|
3sstr4i |
⊢ 𝑆 ⊆ ℂ |
| 11 |
|
eff2 |
⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) |
| 12 |
11
|
a1i |
⊢ ( 𝑆 ⊆ ℂ → exp : ℂ ⟶ ( ℂ ∖ { 0 } ) ) |
| 13 |
12
|
feqmptd |
⊢ ( 𝑆 ⊆ ℂ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
| 14 |
13
|
reseq1d |
⊢ ( 𝑆 ⊆ ℂ → ( exp ↾ 𝑆 ) = ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ↾ 𝑆 ) ) |
| 15 |
|
resmpt |
⊢ ( 𝑆 ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ 𝑦 ) ) ) |
| 16 |
14 15
|
eqtrd |
⊢ ( 𝑆 ⊆ ℂ → ( exp ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ 𝑦 ) ) ) |
| 17 |
10 16
|
ax-mp |
⊢ ( exp ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ 𝑦 ) ) |
| 18 |
10
|
sseli |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) |
| 19 |
11
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑦 ∈ 𝑆 → ( exp ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 23 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 24 |
22 23
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 25 |
24
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) |
| 26 |
24
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 27 |
25 26
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ∈ ℝ+ ) |
| 28 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
| 29 |
|
f1ocnv |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ◡ ( exp ↾ ℝ ) : ℝ+ –1-1-onto→ ℝ ) |
| 30 |
|
f1of |
⊢ ( ◡ ( exp ↾ ℝ ) : ℝ+ –1-1-onto→ ℝ → ◡ ( exp ↾ ℝ ) : ℝ+ ⟶ ℝ ) |
| 31 |
28 29 30
|
mp2b |
⊢ ◡ ( exp ↾ ℝ ) : ℝ+ ⟶ ℝ |
| 32 |
31
|
ffvelcdmi |
⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ+ → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
| 33 |
27 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℂ ) |
| 35 |
|
ax-icn |
⊢ i ∈ ℂ |
| 36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝐷 ⊆ ℝ ) |
| 37 |
|
eqid |
⊢ ( ◡ abs “ { 1 } ) = ( ◡ abs “ { 1 } ) |
| 38 |
|
eqid |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 39 |
1 37 3 4 5 38
|
efif1olem4 |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ) |
| 40 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) → ◡ 𝐹 : ( ◡ abs “ { 1 } ) –1-1-onto→ 𝐷 ) |
| 41 |
|
f1of |
⊢ ( ◡ 𝐹 : ( ◡ abs “ { 1 } ) –1-1-onto→ 𝐷 → ◡ 𝐹 : ( ◡ abs “ { 1 } ) ⟶ 𝐷 ) |
| 42 |
39 40 41
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : ( ◡ abs “ { 1 } ) ⟶ 𝐷 ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ◡ 𝐹 : ( ◡ abs “ { 1 } ) ⟶ 𝐷 ) |
| 44 |
25
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ∈ ℂ ) |
| 46 |
25 26
|
absne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ 𝑥 ) ≠ 0 ) |
| 47 |
25 45 46
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ℂ ) |
| 48 |
25 45 46
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝑥 ) / ( abs ‘ ( abs ‘ 𝑥 ) ) ) ) |
| 49 |
|
absidm |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( abs ‘ 𝑥 ) ) = ( abs ‘ 𝑥 ) ) |
| 50 |
25 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( abs ‘ 𝑥 ) ) = ( abs ‘ 𝑥 ) ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ 𝑥 ) / ( abs ‘ ( abs ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝑥 ) / ( abs ‘ 𝑥 ) ) ) |
| 52 |
45 46
|
dividd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ 𝑥 ) / ( abs ‘ 𝑥 ) ) = 1 ) |
| 53 |
48 51 52
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 1 ) |
| 54 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 55 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 56 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ℂ ∧ ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 1 ) ) ) |
| 57 |
54 55 56
|
mp2b |
⊢ ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ℂ ∧ ( abs ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 1 ) ) |
| 58 |
47 53 57
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
| 59 |
43 58
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ 𝐷 ) |
| 60 |
36 59
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 61 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 62 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 63 |
35 61 62
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 64 |
34 63
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 65 |
33 60
|
crimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) |
| 66 |
65 59
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ∈ 𝐷 ) |
| 67 |
|
ffn |
⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) |
| 68 |
|
elpreima |
⊢ ( ℑ Fn ℂ → ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ℂ ∧ ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ∈ 𝐷 ) ) ) |
| 69 |
7 67 68
|
mp2b |
⊢ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ℂ ∧ ( ℑ ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ∈ 𝐷 ) ) |
| 70 |
64 66 69
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ ( ◡ ℑ “ 𝐷 ) ) |
| 71 |
70 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ 𝑆 ) |
| 72 |
|
efadd |
⊢ ( ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ∈ ℂ ∧ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ∈ ℂ ) → ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) · ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 73 |
34 63 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) · ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 74 |
33
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) ) |
| 75 |
|
f1ocnvfv2 |
⊢ ( ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ ( abs ‘ 𝑥 ) ∈ ℝ+ ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( abs ‘ 𝑥 ) ) |
| 76 |
28 27 75
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( abs ‘ 𝑥 ) ) |
| 77 |
74 76
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) = ( abs ‘ 𝑥 ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) → ( i · 𝑧 ) = ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) |
| 79 |
78
|
fveq2d |
⊢ ( 𝑧 = ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) → ( exp ‘ ( i · 𝑧 ) ) = ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) |
| 80 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( i · 𝑤 ) = ( i · 𝑧 ) ) |
| 81 |
80
|
fveq2d |
⊢ ( 𝑤 = 𝑧 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑧 ) ) ) |
| 82 |
81
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) = ( 𝑧 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 83 |
1 82
|
eqtri |
⊢ 𝐹 = ( 𝑧 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 84 |
|
fvex |
⊢ ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ∈ V |
| 85 |
79 83 84
|
fvmpt |
⊢ ( ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ∈ 𝐷 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) |
| 86 |
59 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) |
| 87 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ) |
| 88 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ∧ ( 𝑥 / ( abs ‘ 𝑥 ) ) ∈ ( ◡ abs “ { 1 } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 / ( abs ‘ 𝑥 ) ) ) |
| 89 |
87 58 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 / ( abs ‘ 𝑥 ) ) ) |
| 90 |
86 89
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) = ( 𝑥 / ( abs ‘ 𝑥 ) ) ) |
| 91 |
77 90
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ‘ ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) ) · ( exp ‘ ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) = ( ( abs ‘ 𝑥 ) · ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) |
| 92 |
25 45 46
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ 𝑥 ) · ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = 𝑥 ) |
| 93 |
73 91 92
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 94 |
93
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → 𝑥 = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 96 |
95
|
eqeq2d |
⊢ ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) → ( 𝑥 = ( exp ‘ 𝑦 ) ↔ 𝑥 = ( exp ‘ ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) ) |
| 97 |
94 96
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) → 𝑥 = ( exp ‘ 𝑦 ) ) ) |
| 98 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 99 |
98
|
replimd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 100 |
|
absef |
⊢ ( 𝑦 ∈ ℂ → ( abs ‘ ( exp ‘ 𝑦 ) ) = ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 101 |
98 100
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( exp ‘ 𝑦 ) ) = ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 102 |
98
|
recld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 103 |
102
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) = ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 104 |
101 103
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( exp ‘ 𝑦 ) ) = ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) |
| 105 |
104
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( ◡ ( exp ↾ ℝ ) ‘ ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) ) |
| 106 |
|
f1ocnvfv1 |
⊢ ( ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ ( ℜ ‘ 𝑦 ) ∈ ℝ ) → ( ◡ ( exp ↾ ℝ ) ‘ ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) = ( ℜ ‘ 𝑦 ) ) |
| 107 |
28 102 106
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( ( exp ↾ ℝ ) ‘ ( ℜ ‘ 𝑦 ) ) ) = ( ℜ ‘ 𝑦 ) ) |
| 108 |
105 107
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( ℜ ‘ 𝑦 ) ) |
| 109 |
98
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
| 110 |
109
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℑ ‘ 𝑦 ) ∈ ℂ ) |
| 111 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝑦 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ ) |
| 112 |
35 110 111
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ ) |
| 113 |
|
efcl |
⊢ ( ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 114 |
112 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 115 |
102
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℜ ‘ 𝑦 ) ∈ ℂ ) |
| 116 |
|
efcl |
⊢ ( ( ℜ ‘ 𝑦 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ∈ ℂ ) |
| 117 |
115 116
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ∈ ℂ ) |
| 118 |
|
efne0 |
⊢ ( ( ℜ ‘ 𝑦 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ≠ 0 ) |
| 119 |
115 118
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( ℜ ‘ 𝑦 ) ) ≠ 0 ) |
| 120 |
114 117 119
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 121 |
99
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 122 |
|
efadd |
⊢ ( ( ( ℜ ‘ 𝑦 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝑦 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 123 |
115 112 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 124 |
121 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ 𝑦 ) = ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) ) |
| 125 |
124 101
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( ( ( exp ‘ ( ℜ ‘ 𝑦 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑦 ) ) ) ) |
| 126 |
|
elpreima |
⊢ ( ℑ Fn ℂ → ( 𝑦 ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) ) ) |
| 127 |
7 67 126
|
mp2b |
⊢ ( 𝑦 ∈ ( ◡ ℑ “ 𝐷 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) ) |
| 128 |
127
|
simprbi |
⊢ ( 𝑦 ∈ ( ◡ ℑ “ 𝐷 ) → ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) |
| 129 |
128 2
|
eleq2s |
⊢ ( 𝑦 ∈ 𝑆 → ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) |
| 130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) |
| 131 |
|
oveq2 |
⊢ ( 𝑤 = ( ℑ ‘ 𝑦 ) → ( i · 𝑤 ) = ( i · ( ℑ ‘ 𝑦 ) ) ) |
| 132 |
131
|
fveq2d |
⊢ ( 𝑤 = ( ℑ ‘ 𝑦 ) → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 133 |
|
fvex |
⊢ ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ V |
| 134 |
132 1 133
|
fvmpt |
⊢ ( ( ℑ ‘ 𝑦 ) ∈ 𝐷 → ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 135 |
130 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) = ( exp ‘ ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 136 |
120 125 135
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) = ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) |
| 137 |
136
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) ) |
| 138 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ ( ◡ abs “ { 1 } ) ∧ ( ℑ ‘ 𝑦 ) ∈ 𝐷 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) = ( ℑ ‘ 𝑦 ) ) |
| 139 |
39 129 138
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( ℑ ‘ 𝑦 ) ) ) = ( ℑ ‘ 𝑦 ) ) |
| 140 |
137 139
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) = ( ℑ ‘ 𝑦 ) ) |
| 141 |
140
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) = ( i · ( ℑ ‘ 𝑦 ) ) ) |
| 142 |
108 141
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 143 |
99 142
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) ) |
| 144 |
|
fveq2 |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( exp ‘ 𝑦 ) ) ) |
| 145 |
144
|
fveq2d |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) = ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) |
| 146 |
|
id |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → 𝑥 = ( exp ‘ 𝑦 ) ) |
| 147 |
146 144
|
oveq12d |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( 𝑥 / ( abs ‘ 𝑥 ) ) = ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) |
| 148 |
147
|
fveq2d |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) = ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) = ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) |
| 150 |
145 149
|
oveq12d |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) ) |
| 151 |
150
|
eqeq2d |
⊢ ( 𝑥 = ( exp ‘ 𝑦 ) → ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ↔ 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ ( exp ‘ 𝑦 ) ) ) + ( i · ( ◡ 𝐹 ‘ ( ( exp ‘ 𝑦 ) / ( abs ‘ ( exp ‘ 𝑦 ) ) ) ) ) ) ) ) |
| 152 |
143 151
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 = ( exp ‘ 𝑦 ) → 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 153 |
152
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑥 = ( exp ‘ 𝑦 ) → 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ) ) |
| 154 |
97 153
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑦 = ( ( ◡ ( exp ↾ ℝ ) ‘ ( abs ‘ 𝑥 ) ) + ( i · ( ◡ 𝐹 ‘ ( 𝑥 / ( abs ‘ 𝑥 ) ) ) ) ) ↔ 𝑥 = ( exp ‘ 𝑦 ) ) ) |
| 155 |
17 21 71 154
|
f1o2d |
⊢ ( 𝜑 → ( exp ↾ 𝑆 ) : 𝑆 –1-1-onto→ ( ℂ ∖ { 0 } ) ) |