Step |
Hyp |
Ref |
Expression |
1 |
|
effsumlt.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
effsumlt.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
3 |
|
effsumlt.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
5 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
6 |
1
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
8 |
2
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
9 |
|
reeftcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
11 |
7 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
12 |
4 5 11
|
serfre |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) : ℕ0 ⟶ ℝ ) |
13 |
12 3
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
14 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) |
15 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
18 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
19 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ+ ) |
20 |
2 18 19
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ+ ) |
21 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
23 |
22
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
24 |
20 23
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ+ ) |
25 |
7 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
26 |
8
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
27 |
1
|
efcllem |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
29 |
4 14 16 17 25 28
|
isumrpcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
30 |
13 29
|
ltaddrpd |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
31 |
1
|
efval2 |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ) |
32 |
26 31
|
syl |
⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ) |
33 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
34 |
4 14 16 17 33 28
|
isumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
35 |
3
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
38 |
35 36 37
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
39 |
38
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
40 |
39
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) |
41 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
42 |
3 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
43 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
44 |
43 33
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
45 |
41 42 44
|
fsumser |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ) |
46 |
40 45
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
48 |
32 34 47
|
3eqtrd |
⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = ( ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
49 |
30 48
|
breqtrrd |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐹 ) ‘ 𝑁 ) < ( exp ‘ 𝐴 ) ) |