Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
eqid |
⊢ { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } |
8 |
1 2 3 4 5 6 7
|
efgcpbllemb |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∼ ⊆ { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } ) |
9 |
8
|
ssbrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑋 ∼ 𝑌 → 𝑋 { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } 𝑌 ) ) |
10 |
9
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∼ 𝑌 ) → 𝑋 { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } 𝑌 ) |
11 |
1 2 3 4 5 6 7
|
efgcpbllema |
⊢ ( 𝑋 { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } 𝑌 ↔ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) ) |
12 |
11
|
simp3bi |
⊢ ( 𝑋 { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } 𝑌 → ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) |