Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
1 2
|
efger |
⊢ ∼ Er 𝑊 |
8 |
7
|
a1i |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ∼ Er 𝑊 ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐴 ∼ 𝑋 ) |
10 |
8 9
|
ercl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐴 ∈ 𝑊 ) |
11 |
|
wrd0 |
⊢ ∅ ∈ Word ( 𝐼 × 2o ) |
12 |
1
|
efgrcl |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
14 |
13
|
simprd |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
15 |
11 14
|
eleqtrrid |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ∅ ∈ 𝑊 ) |
16 |
|
simpr |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐵 ∼ 𝑌 ) |
17 |
1 2 3 4 5 6
|
efgcpbl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ∅ ∈ 𝑊 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) ) |
18 |
10 15 16 17
|
syl3anc |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) ) |
19 |
10 14
|
eleqtrd |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
20 |
8 16
|
ercl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐵 ∈ 𝑊 ) |
21 |
20 14
|
eleqtrd |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝐵 ∈ Word ( 𝐼 × 2o ) ) |
22 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) |
23 |
19 21 22
|
syl2anc |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) ) |
24 |
|
ccatrid |
⊢ ( ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) = ( 𝐴 ++ 𝐵 ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) = ( 𝐴 ++ 𝐵 ) ) |
26 |
8 16
|
ercl2 |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑌 ∈ 𝑊 ) |
27 |
26 14
|
eleqtrd |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑌 ∈ Word ( 𝐼 × 2o ) ) |
28 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝑌 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) ) |
29 |
19 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) ) |
30 |
|
ccatrid |
⊢ ( ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) = ( 𝐴 ++ 𝑌 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) = ( 𝐴 ++ 𝑌 ) ) |
32 |
18 25 31
|
3brtr3d |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∼ ( 𝐴 ++ 𝑌 ) ) |
33 |
1 2 3 4 5 6
|
efgcpbl |
⊢ ( ( ∅ ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ 𝐴 ∼ 𝑋 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) ∼ ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) ) |
34 |
15 26 9 33
|
syl3anc |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) ∼ ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) ) |
35 |
|
ccatlid |
⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝐴 ) = 𝐴 ) |
36 |
19 35
|
syl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ∅ ++ 𝐴 ) = 𝐴 ) |
37 |
36
|
oveq1d |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) = ( 𝐴 ++ 𝑌 ) ) |
38 |
8 9
|
ercl2 |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑋 ∈ 𝑊 ) |
39 |
38 14
|
eleqtrd |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → 𝑋 ∈ Word ( 𝐼 × 2o ) ) |
40 |
|
ccatlid |
⊢ ( 𝑋 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝑋 ) = 𝑋 ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ∅ ++ 𝑋 ) = 𝑋 ) |
42 |
41
|
oveq1d |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) = ( 𝑋 ++ 𝑌 ) ) |
43 |
34 37 42
|
3brtr3d |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝑌 ) ∼ ( 𝑋 ++ 𝑌 ) ) |
44 |
8 32 43
|
ertrd |
⊢ ( ( 𝐴 ∼ 𝑋 ∧ 𝐵 ∼ 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∼ ( 𝑋 ++ 𝑌 ) ) |