Metamath Proof Explorer


Theorem efgcpbl2

Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
Assertion efgcpbl2 ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐴 ++ 𝐵 ) ( 𝑋 ++ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
6 efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
7 1 2 efger Er 𝑊
8 7 a1i ( ( 𝐴 𝑋𝐵 𝑌 ) → Er 𝑊 )
9 simpl ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝐴 𝑋 )
10 8 9 ercl ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝐴𝑊 )
11 wrd0 ∅ ∈ Word ( 𝐼 × 2o )
12 1 efgrcl ( 𝐴𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
13 10 12 syl ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
14 13 simprd ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝑊 = Word ( 𝐼 × 2o ) )
15 11 14 eleqtrrid ( ( 𝐴 𝑋𝐵 𝑌 ) → ∅ ∈ 𝑊 )
16 simpr ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝐵 𝑌 )
17 1 2 3 4 5 6 efgcpbl ( ( 𝐴𝑊 ∧ ∅ ∈ 𝑊𝐵 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) )
18 10 15 16 17 syl3anc ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) )
19 10 14 eleqtrd ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝐴 ∈ Word ( 𝐼 × 2o ) )
20 8 16 ercl ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝐵𝑊 )
21 20 14 eleqtrd ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝐵 ∈ Word ( 𝐼 × 2o ) )
22 ccatcl ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝐵 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) )
23 19 21 22 syl2anc ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) )
24 ccatrid ( ( 𝐴 ++ 𝐵 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) = ( 𝐴 ++ 𝐵 ) )
25 23 24 syl ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ++ ∅ ) = ( 𝐴 ++ 𝐵 ) )
26 8 16 ercl2 ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝑌𝑊 )
27 26 14 eleqtrd ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝑌 ∈ Word ( 𝐼 × 2o ) )
28 ccatcl ( ( 𝐴 ∈ Word ( 𝐼 × 2o ) ∧ 𝑌 ∈ Word ( 𝐼 × 2o ) ) → ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) )
29 19 27 28 syl2anc ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) )
30 ccatrid ( ( 𝐴 ++ 𝑌 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) = ( 𝐴 ++ 𝑌 ) )
31 29 30 syl ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ( 𝐴 ++ 𝑌 ) ++ ∅ ) = ( 𝐴 ++ 𝑌 ) )
32 18 25 31 3brtr3d ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐴 ++ 𝐵 ) ( 𝐴 ++ 𝑌 ) )
33 1 2 3 4 5 6 efgcpbl ( ( ∅ ∈ 𝑊𝑌𝑊𝐴 𝑋 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) )
34 15 26 9 33 syl3anc ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) )
35 ccatlid ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝐴 ) = 𝐴 )
36 19 35 syl ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ∅ ++ 𝐴 ) = 𝐴 )
37 36 oveq1d ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ( ∅ ++ 𝐴 ) ++ 𝑌 ) = ( 𝐴 ++ 𝑌 ) )
38 8 9 ercl2 ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝑋𝑊 )
39 38 14 eleqtrd ( ( 𝐴 𝑋𝐵 𝑌 ) → 𝑋 ∈ Word ( 𝐼 × 2o ) )
40 ccatlid ( 𝑋 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝑋 ) = 𝑋 )
41 39 40 syl ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ∅ ++ 𝑋 ) = 𝑋 )
42 41 oveq1d ( ( 𝐴 𝑋𝐵 𝑌 ) → ( ( ∅ ++ 𝑋 ) ++ 𝑌 ) = ( 𝑋 ++ 𝑌 ) )
43 34 37 42 3brtr3d ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐴 ++ 𝑌 ) ( 𝑋 ++ 𝑌 ) )
44 8 32 43 ertrd ( ( 𝐴 𝑋𝐵 𝑌 ) → ( 𝐴 ++ 𝐵 ) ( 𝑋 ++ 𝑌 ) )