Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
efgcpbllem.1 |
⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } |
8 |
|
oveq2 |
⊢ ( 𝑖 = 𝑋 → ( 𝐴 ++ 𝑖 ) = ( 𝐴 ++ 𝑋 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑖 = 𝑋 → ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) = ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑗 = 𝑌 → ( 𝐴 ++ 𝑗 ) = ( 𝐴 ++ 𝑌 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑗 = 𝑌 → ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) = ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) |
12 |
9 11
|
breqan12d |
⊢ ( ( 𝑖 = 𝑋 ∧ 𝑗 = 𝑌 ) → ( ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ↔ ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) ) |
13 |
|
vex |
⊢ 𝑖 ∈ V |
14 |
|
vex |
⊢ 𝑗 ∈ V |
15 |
13 14
|
prss |
⊢ ( ( 𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊 ) ↔ { 𝑖 , 𝑗 } ⊆ 𝑊 ) |
16 |
15
|
anbi1i |
⊢ ( ( ( 𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) ↔ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) ) |
17 |
16
|
opabbii |
⊢ { 〈 𝑖 , 𝑗 〉 ∣ ( ( 𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝑊 ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } |
18 |
7 17
|
eqtr4i |
⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ( ( 𝑖 ∈ 𝑊 ∧ 𝑗 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑖 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑗 ) ++ 𝐵 ) ) } |
19 |
12 18
|
brab2a |
⊢ ( 𝑋 𝐿 𝑌 ↔ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) ) |
20 |
|
df-3an |
⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) ↔ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ∧ ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) ) |
21 |
19 20
|
bitr4i |
⊢ ( 𝑋 𝐿 𝑌 ↔ ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑊 ∧ ( ( 𝐴 ++ 𝑋 ) ++ 𝐵 ) ∼ ( ( 𝐴 ++ 𝑌 ) ++ 𝐵 ) ) ) |