| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
1
|
efglem |
⊢ ∃ 𝑟 ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) |
| 4 |
|
abn0 |
⊢ ( { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } ≠ ∅ ↔ ∃ 𝑟 ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) ) |
| 5 |
3 4
|
mpbir |
⊢ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } ≠ ∅ |
| 6 |
|
ereq1 |
⊢ ( 𝑤 = 𝑟 → ( 𝑤 Er 𝑊 ↔ 𝑟 Er 𝑊 ) ) |
| 7 |
6
|
ralab2 |
⊢ ( ∀ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 ↔ ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) → 𝑟 Er 𝑊 ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) → 𝑟 Er 𝑊 ) |
| 9 |
7 8
|
mpgbir |
⊢ ∀ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 |
| 10 |
|
iiner |
⊢ ( ( { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } ≠ ∅ ∧ ∀ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 ) → ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 ) |
| 11 |
5 9 10
|
mp2an |
⊢ ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 |
| 12 |
1 2
|
efgval |
⊢ ∼ = ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } |
| 13 |
|
intiin |
⊢ ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } = ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 |
| 14 |
12 13
|
eqtri |
⊢ ∼ = ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 |
| 15 |
|
ereq1 |
⊢ ( ∼ = ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 → ( ∼ Er 𝑊 ↔ ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( ∼ Er 𝑊 ↔ ∩ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice 〈 𝑛 , 𝑛 , 〈“ 〈 𝑦 , 𝑧 〉 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ”〉 〉 ) ) } 𝑤 Er 𝑊 ) |
| 17 |
11 16
|
mpbir |
⊢ ∼ Er 𝑊 |