| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgh.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) |
| 2 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) |
| 4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 5 |
4
|
subgss |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ ) |
| 6 |
3 5
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝑋 ⊆ ℂ ) |
| 7 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
| 8 |
6 7
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 9 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) |
| 10 |
6 9
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 11 |
2 8 10
|
adddid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) = ( exp ‘ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) ) |
| 13 |
2 8
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 14 |
2 10
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 15 |
|
efadd |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ ( 𝐴 · 𝐶 ) ∈ ℂ ) → ( exp ‘ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 17 |
12 16
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ ( 𝐴 · 𝑥 ) ) = ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 20 |
19
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 21 |
1 20
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐵 + 𝐶 ) → ( 𝐴 · 𝑦 ) = ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑦 = ( 𝐵 + 𝐶 ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) ) |
| 24 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 25 |
24
|
subgcl |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 26 |
25
|
3adant1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 27 |
|
fvexd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) ∈ V ) |
| 28 |
21 23 26 27
|
fvmptd3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) = ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · 𝐵 ) ) ) |
| 31 |
|
fvexd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝐵 ) ) ∈ V ) |
| 32 |
21 30 7 31
|
fvmptd3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ( exp ‘ ( 𝐴 · 𝐵 ) ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐶 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑦 = 𝐶 → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · 𝐶 ) ) ) |
| 35 |
|
fvexd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝐶 ) ) ∈ V ) |
| 36 |
21 34 9 35
|
fvmptd3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐶 ) = ( exp ‘ ( 𝐴 · 𝐶 ) ) ) |
| 37 |
32 36
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐵 ) · ( 𝐹 ‘ 𝐶 ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 38 |
17 28 37
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) = ( ( 𝐹 ‘ 𝐵 ) · ( 𝐹 ‘ 𝐶 ) ) ) |