Metamath Proof Explorer


Theorem efgi

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
Assertion efgi ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → 𝐴 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 fveq2 ( 𝑢 = 𝐴 → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ 𝐴 ) )
4 3 oveq2d ( 𝑢 = 𝐴 → ( 0 ... ( ♯ ‘ 𝑢 ) ) = ( 0 ... ( ♯ ‘ 𝐴 ) ) )
5 id ( 𝑢 = 𝐴𝑢 = 𝐴 )
6 oveq1 ( 𝑢 = 𝐴 → ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) = ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) )
7 5 6 breq12d ( 𝑢 = 𝐴 → ( 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
8 7 2ralbidv ( 𝑢 = 𝐴 → ( ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
9 4 8 raleqbidv ( 𝑢 = 𝐴 → ( ∀ 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
10 9 rspcv ( 𝐴𝑊 → ( ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ∀ 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
11 oteq1 ( 𝑖 = 𝑁 → ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ = ⟨ 𝑁 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ )
12 oteq2 ( 𝑖 = 𝑁 → ⟨ 𝑁 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ = ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ )
13 11 12 eqtrd ( 𝑖 = 𝑁 → ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ = ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ )
14 13 oveq2d ( 𝑖 = 𝑁 → ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) = ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) )
15 14 breq2d ( 𝑖 = 𝑁 → ( 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
16 15 2ralbidv ( 𝑖 = 𝑁 → ( ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
17 16 rspcv ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
18 10 17 sylan9 ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
19 opeq1 ( 𝑎 = 𝐽 → ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐽 , 𝑏 ⟩ )
20 opeq1 ( 𝑎 = 𝐽 → ⟨ 𝑎 , ( 1o𝑏 ) ⟩ = ⟨ 𝐽 , ( 1o𝑏 ) ⟩ )
21 19 20 s2eqd ( 𝑎 = 𝐽 → ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ = ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ )
22 21 oteq3d ( 𝑎 = 𝐽 → ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ = ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ )
23 22 oveq2d ( 𝑎 = 𝐽 → ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) = ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) )
24 23 breq2d ( 𝑎 = 𝐽 → ( 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
25 opeq2 ( 𝑏 = 𝐾 → ⟨ 𝐽 , 𝑏 ⟩ = ⟨ 𝐽 , 𝐾 ⟩ )
26 difeq2 ( 𝑏 = 𝐾 → ( 1o𝑏 ) = ( 1o𝐾 ) )
27 26 opeq2d ( 𝑏 = 𝐾 → ⟨ 𝐽 , ( 1o𝑏 ) ⟩ = ⟨ 𝐽 , ( 1o𝐾 ) ⟩ )
28 25 27 s2eqd ( 𝑏 = 𝐾 → ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ = ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ )
29 28 oteq3d ( 𝑏 = 𝐾 → ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ = ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ )
30 29 oveq2d ( 𝑏 = 𝐾 → ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) = ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) )
31 30 breq2d ( 𝑏 = 𝐾 → ( 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ) )
32 df-br ( 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ↔ ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 )
33 31 32 bitrdi ( 𝑏 = 𝐾 → ( 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝑏 ⟩ ⟨ 𝐽 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 ) )
34 24 33 rspc2v ( ( 𝐽𝐼𝐾 ∈ 2o ) → ( ∀ 𝑎𝐼𝑏 ∈ 2o 𝐴 𝑟 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 ) )
35 18 34 sylan9 ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → ( ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 ) )
36 35 adantld ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 ) )
37 36 alrimiv ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 ) )
38 opex 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ V
39 38 elintab ( ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } ↔ ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ 𝑟 ) )
40 37 39 sylibr ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } )
41 1 2 efgval = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑢𝑊𝑖 ∈ ( 0 ... ( ♯ ‘ 𝑢 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑢 𝑟 ( 𝑢 splice ⟨ 𝑖 , 𝑖 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) }
42 40 41 eleqtrrdi ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ )
43 df-br ( 𝐴 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ↔ ⟨ 𝐴 , ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) ⟩ ∈ )
44 42 43 sylibr ( ( ( 𝐴𝑊𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝐽𝐼𝐾 ∈ 2o ) ) → 𝐴 ( 𝐴 splice ⟨ 𝑁 , 𝑁 , ⟨“ ⟨ 𝐽 , 𝐾 ⟩ ⟨ 𝐽 , ( 1o𝐾 ) ⟩ ”⟩ ⟩ ) )