| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑇 ‘ 𝑎 )  =  ( 𝑇 ‘ 𝐴 ) ) | 
						
							| 6 | 5 | rneqd | ⊢ ( 𝑎  =  𝐴  →  ran  ( 𝑇 ‘ 𝑎 )  =  ran  ( 𝑇 ‘ 𝐴 ) ) | 
						
							| 7 |  | eceq1 | ⊢ ( 𝑎  =  𝐴  →  [ 𝑎 ] 𝑟  =  [ 𝐴 ] 𝑟 ) | 
						
							| 8 | 6 7 | sseq12d | ⊢ ( 𝑎  =  𝐴  →  ( ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟  ↔  ran  ( 𝑇 ‘ 𝐴 )  ⊆  [ 𝐴 ] 𝑟 ) ) | 
						
							| 9 | 8 | rspcv | ⊢ ( 𝐴  ∈  𝑊  →  ( ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟  →  ran  ( 𝑇 ‘ 𝐴 )  ⊆  [ 𝐴 ] 𝑟 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  ( ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟  →  ran  ( 𝑇 ‘ 𝐴 )  ⊆  [ 𝐴 ] 𝑟 ) ) | 
						
							| 11 |  | ssel | ⊢ ( ran  ( 𝑇 ‘ 𝐴 )  ⊆  [ 𝐴 ] 𝑟  →  ( 𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 )  →  𝐵  ∈  [ 𝐴 ] 𝑟 ) ) | 
						
							| 12 | 11 | com12 | ⊢ ( 𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 )  →  ( ran  ( 𝑇 ‘ 𝐴 )  ⊆  [ 𝐴 ] 𝑟  →  𝐵  ∈  [ 𝐴 ] 𝑟 ) ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐵  ∈  [ 𝐴 ] 𝑟  ∧  𝐴  ∈  𝑊 )  →  𝐵  ∈  [ 𝐴 ] 𝑟 ) | 
						
							| 14 |  | elecg | ⊢ ( ( 𝐵  ∈  [ 𝐴 ] 𝑟  ∧  𝐴  ∈  𝑊 )  →  ( 𝐵  ∈  [ 𝐴 ] 𝑟  ↔  𝐴 𝑟 𝐵 ) ) | 
						
							| 15 | 13 14 | mpbid | ⊢ ( ( 𝐵  ∈  [ 𝐴 ] 𝑟  ∧  𝐴  ∈  𝑊 )  →  𝐴 𝑟 𝐵 ) | 
						
							| 16 |  | df-br | ⊢ ( 𝐴 𝑟 𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( 𝐵  ∈  [ 𝐴 ] 𝑟  ∧  𝐴  ∈  𝑊 )  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) | 
						
							| 18 | 17 | expcom | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝐵  ∈  [ 𝐴 ] 𝑟  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) ) | 
						
							| 19 | 12 18 | sylan9r | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  ( ran  ( 𝑇 ‘ 𝐴 )  ⊆  [ 𝐴 ] 𝑟  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) ) | 
						
							| 20 | 10 19 | syld | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  ( ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) ) | 
						
							| 21 | 20 | adantld | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  ( ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 )  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) ) | 
						
							| 22 | 21 | alrimiv | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  ∀ 𝑟 ( ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 )  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) ) | 
						
							| 23 |  | opex | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  V | 
						
							| 24 | 23 | elintab | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ∩  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) }  ↔  ∀ 𝑟 ( ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 )  →  〈 𝐴 ,  𝐵 〉  ∈  𝑟 ) ) | 
						
							| 25 | 22 24 | sylibr | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  〈 𝐴 ,  𝐵 〉  ∈  ∩  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) } ) | 
						
							| 26 | 1 2 3 4 | efgval2 | ⊢  ∼   =  ∩  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) } | 
						
							| 27 | 25 26 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  〈 𝐴 ,  𝐵 〉  ∈   ∼  ) | 
						
							| 28 |  | df-br | ⊢ ( 𝐴  ∼  𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈   ∼  ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝐵  ∈  ran  ( 𝑇 ‘ 𝐴 ) )  →  𝐴  ∼  𝐵 ) |