| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | fviss | ⊢ (  I  ‘ Word  ( 𝐼  ×  2o ) )  ⊆  Word  ( 𝐼  ×  2o ) | 
						
							| 6 | 1 5 | eqsstri | ⊢ 𝑊  ⊆  Word  ( 𝐼  ×  2o ) | 
						
							| 7 | 6 | sseli | ⊢ ( 𝐴  ∈  𝑊  →  𝐴  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 8 |  | revcl | ⊢ ( 𝐴  ∈  Word  ( 𝐼  ×  2o )  →  ( reverse ‘ 𝐴 )  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  ∈  𝑊  →  ( reverse ‘ 𝐴 )  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 10 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼  ×  2o ) ⟶ ( 𝐼  ×  2o ) | 
						
							| 11 |  | revco | ⊢ ( ( ( reverse ‘ 𝐴 )  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑀 : ( 𝐼  ×  2o ) ⟶ ( 𝐼  ×  2o ) )  →  ( 𝑀  ∘  ( reverse ‘ ( reverse ‘ 𝐴 ) ) )  =  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( reverse ‘ ( reverse ‘ 𝐴 ) ) )  =  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) ) | 
						
							| 13 |  | revrev | ⊢ ( 𝐴  ∈  Word  ( 𝐼  ×  2o )  →  ( reverse ‘ ( reverse ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 14 | 7 13 | syl | ⊢ ( 𝐴  ∈  𝑊  →  ( reverse ‘ ( reverse ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 15 | 14 | coeq2d | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( reverse ‘ ( reverse ‘ 𝐴 ) ) )  =  ( 𝑀  ∘  𝐴 ) ) | 
						
							| 16 | 12 15 | eqtr3d | ⊢ ( 𝐴  ∈  𝑊  →  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) )  =  ( 𝑀  ∘  𝐴 ) ) | 
						
							| 17 | 16 | coeq2d | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) )  =  ( 𝑀  ∘  ( 𝑀  ∘  𝐴 ) ) ) | 
						
							| 18 |  | wrdf | ⊢ ( 𝐴  ∈  Word  ( 𝐼  ×  2o )  →  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼  ×  2o ) ) | 
						
							| 19 | 7 18 | syl | ⊢ ( 𝐴  ∈  𝑊  →  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼  ×  2o ) ) | 
						
							| 20 | 19 | ffvelcdmda | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) ) )  →  ( 𝐴 ‘ 𝑐 )  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 21 | 3 | efgmnvl | ⊢ ( ( 𝐴 ‘ 𝑐 )  ∈  ( 𝐼  ×  2o )  →  ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) )  =  ( 𝐴 ‘ 𝑐 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) ) )  →  ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) )  =  ( 𝐴 ‘ 𝑐 ) ) | 
						
							| 23 | 22 | mpteq2dva | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↦  ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) )  =  ( 𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↦  ( 𝐴 ‘ 𝑐 ) ) ) | 
						
							| 24 | 10 | ffvelcdmi | ⊢ ( ( 𝐴 ‘ 𝑐 )  ∈  ( 𝐼  ×  2o )  →  ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) )  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 25 | 20 24 | syl | ⊢ ( ( 𝐴  ∈  𝑊  ∧  𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) ) )  →  ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) )  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 26 |  | fcompt | ⊢ ( ( 𝑀 : ( 𝐼  ×  2o ) ⟶ ( 𝐼  ×  2o )  ∧  𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼  ×  2o ) )  →  ( 𝑀  ∘  𝐴 )  =  ( 𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↦  ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) | 
						
							| 27 | 10 19 26 | sylancr | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  𝐴 )  =  ( 𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↦  ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) | 
						
							| 28 | 10 | a1i | ⊢ ( 𝐴  ∈  𝑊  →  𝑀 : ( 𝐼  ×  2o ) ⟶ ( 𝐼  ×  2o ) ) | 
						
							| 29 | 28 | feqmptd | ⊢ ( 𝐴  ∈  𝑊  →  𝑀  =  ( 𝑎  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑀 ‘ 𝑎 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) )  →  ( 𝑀 ‘ 𝑎 )  =  ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) | 
						
							| 31 | 25 27 29 30 | fmptco | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( 𝑀  ∘  𝐴 ) )  =  ( 𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↦  ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) ) | 
						
							| 32 | 19 | feqmptd | ⊢ ( 𝐴  ∈  𝑊  →  𝐴  =  ( 𝑐  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↦  ( 𝐴 ‘ 𝑐 ) ) ) | 
						
							| 33 | 23 31 32 | 3eqtr4d | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( 𝑀  ∘  𝐴 ) )  =  𝐴 ) | 
						
							| 34 | 17 33 | eqtrd | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) )  =  𝐴 ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝐴  ∈  𝑊  →  ( ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ++  ( 𝑀  ∘  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) ) )  =  ( ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ++  𝐴 ) ) | 
						
							| 36 |  | wrdco | ⊢ ( ( ( reverse ‘ 𝐴 )  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑀 : ( 𝐼  ×  2o ) ⟶ ( 𝐼  ×  2o ) )  →  ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 37 | 9 10 36 | sylancl | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 38 | 1 | efgrcl | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝐼  ∈  V  ∧  𝑊  =  Word  ( 𝐼  ×  2o ) ) ) | 
						
							| 39 | 38 | simprd | ⊢ ( 𝐴  ∈  𝑊  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 40 | 37 39 | eleqtrrd | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ∈  𝑊 ) | 
						
							| 41 | 1 2 3 4 | efginvrel2 | ⊢ ( ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ∈  𝑊  →  ( ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ++  ( 𝑀  ∘  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) ) )  ∼  ∅ ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝐴  ∈  𝑊  →  ( ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ++  ( 𝑀  ∘  ( reverse ‘ ( 𝑀  ∘  ( reverse ‘ 𝐴 ) ) ) ) )  ∼  ∅ ) | 
						
							| 43 | 35 42 | eqbrtrrd | ⊢ ( 𝐴  ∈  𝑊  →  ( ( 𝑀  ∘  ( reverse ‘ 𝐴 ) )  ++  𝐴 )  ∼  ∅ ) |