Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
6 |
1 5
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
7 |
6
|
sseli |
⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
8 |
|
id |
⊢ ( 𝑐 = ∅ → 𝑐 = ∅ ) |
9 |
|
fveq2 |
⊢ ( 𝑐 = ∅ → ( reverse ‘ 𝑐 ) = ( reverse ‘ ∅ ) ) |
10 |
|
rev0 |
⊢ ( reverse ‘ ∅ ) = ∅ |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑐 = ∅ → ( reverse ‘ 𝑐 ) = ∅ ) |
12 |
11
|
coeq2d |
⊢ ( 𝑐 = ∅ → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ∅ ) ) |
13 |
|
co02 |
⊢ ( 𝑀 ∘ ∅ ) = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( 𝑐 = ∅ → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ∅ ) |
15 |
8 14
|
oveq12d |
⊢ ( 𝑐 = ∅ → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( ∅ ++ ∅ ) ) |
16 |
15
|
breq1d |
⊢ ( 𝑐 = ∅ → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( ∅ ++ ∅ ) ∼ ∅ ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑐 = ∅ → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( ∅ ++ ∅ ) ∼ ∅ ) ) ) |
18 |
|
id |
⊢ ( 𝑐 = 𝑎 → 𝑐 = 𝑎 ) |
19 |
|
fveq2 |
⊢ ( 𝑐 = 𝑎 → ( reverse ‘ 𝑐 ) = ( reverse ‘ 𝑎 ) ) |
20 |
19
|
coeq2d |
⊢ ( 𝑐 = 𝑎 → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
22 |
21
|
breq1d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) ) ) |
24 |
|
id |
⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( reverse ‘ 𝑐 ) = ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) |
26 |
25
|
coeq2d |
⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) |
27 |
24 26
|
oveq12d |
⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
28 |
27
|
breq1d |
⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) ) |
30 |
|
id |
⊢ ( 𝑐 = 𝐴 → 𝑐 = 𝐴 ) |
31 |
|
fveq2 |
⊢ ( 𝑐 = 𝐴 → ( reverse ‘ 𝑐 ) = ( reverse ‘ 𝐴 ) ) |
32 |
31
|
coeq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) |
33 |
30 32
|
oveq12d |
⊢ ( 𝑐 = 𝐴 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) |
34 |
33
|
breq1d |
⊢ ( 𝑐 = 𝐴 → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) ) ) |
36 |
|
ccatidid |
⊢ ( ∅ ++ ∅ ) = ∅ |
37 |
1 2
|
efger |
⊢ ∼ Er 𝑊 |
38 |
37
|
a1i |
⊢ ( 𝐴 ∈ 𝑊 → ∼ Er 𝑊 ) |
39 |
|
wrd0 |
⊢ ∅ ∈ Word ( 𝐼 × 2o ) |
40 |
1
|
efgrcl |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
41 |
40
|
simprd |
⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
42 |
39 41
|
eleqtrrid |
⊢ ( 𝐴 ∈ 𝑊 → ∅ ∈ 𝑊 ) |
43 |
38 42
|
erref |
⊢ ( 𝐴 ∈ 𝑊 → ∅ ∼ ∅ ) |
44 |
36 43
|
eqbrtrid |
⊢ ( 𝐴 ∈ 𝑊 → ( ∅ ++ ∅ ) ∼ ∅ ) |
45 |
37
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ∼ Er 𝑊 ) |
46 |
|
simprl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 ∈ Word ( 𝐼 × 2o ) ) |
47 |
|
revcl |
⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ) |
48 |
47
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ) |
49 |
3
|
efgmf |
⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
50 |
|
wrdco |
⊢ ( ( ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) |
51 |
48 49 50
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) |
52 |
|
ccatcl |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
53 |
46 51 52
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
54 |
41
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
55 |
53 54
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 ) |
56 |
|
lencl |
⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
57 |
56
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
58 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
59 |
57 58
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ 0 ) ) |
60 |
|
ccatlen |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) = ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
61 |
46 51 60
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) = ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
62 |
57
|
nn0zd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ℤ ) |
63 |
62
|
uzidd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
64 |
|
lencl |
⊢ ( ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ ℕ0 ) |
65 |
51 64
|
syl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ ℕ0 ) |
66 |
|
uzaddcl |
⊢ ( ( ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ∧ ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
67 |
63 65 66
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
68 |
61 67
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
69 |
|
elfzuzb |
⊢ ( ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ↔ ( ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) ) |
70 |
59 68 69
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ) |
71 |
|
simprr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑏 ∈ ( 𝐼 × 2o ) ) |
72 |
1 2 3 4
|
efgtval |
⊢ ( ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 ∧ ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) = ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 ( ♯ ‘ 𝑎 ) , ( ♯ ‘ 𝑎 ) , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
73 |
55 70 71 72
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) = ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 ( ♯ ‘ 𝑎 ) , ( ♯ ‘ 𝑎 ) , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
74 |
39
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ∅ ∈ Word ( 𝐼 × 2o ) ) |
75 |
49
|
ffvelrni |
⊢ ( 𝑏 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
76 |
75
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
77 |
71 76
|
s2cld |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
78 |
|
ccatrid |
⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( 𝑎 ++ ∅ ) = 𝑎 ) |
79 |
78
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ∅ ) = 𝑎 ) |
80 |
79
|
eqcomd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 = ( 𝑎 ++ ∅ ) ) |
81 |
80
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ ∅ ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
82 |
|
eqidd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑎 ) ) |
83 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
84 |
83
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝑎 ) + 0 ) |
85 |
57
|
nn0cnd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ℂ ) |
86 |
85
|
addid1d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) + 0 ) = ( ♯ ‘ 𝑎 ) ) |
87 |
84 86
|
eqtr2id |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) = ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ∅ ) ) ) |
88 |
46 74 51 77 81 82 87
|
splval2 |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 ( ♯ ‘ 𝑎 ) , ( ♯ ‘ 𝑎 ) , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) = ( ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
89 |
71
|
s1cld |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ) |
90 |
|
revccat |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑏 ”〉 ) ++ ( reverse ‘ 𝑎 ) ) ) |
91 |
46 89 90
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑏 ”〉 ) ++ ( reverse ‘ 𝑎 ) ) ) |
92 |
|
revs1 |
⊢ ( reverse ‘ 〈“ 𝑏 ”〉 ) = 〈“ 𝑏 ”〉 |
93 |
92
|
oveq1i |
⊢ ( ( reverse ‘ 〈“ 𝑏 ”〉 ) ++ ( reverse ‘ 𝑎 ) ) = ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) |
94 |
91 93
|
eqtrdi |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) = ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) |
95 |
94
|
coeq2d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) = ( 𝑀 ∘ ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) ) |
96 |
49
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) |
97 |
|
ccatco |
⊢ ( ( 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
98 |
89 48 96 97
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
99 |
|
s1co |
⊢ ( ( 𝑏 ∈ ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) = 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) |
100 |
71 49 99
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) = 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) |
101 |
100
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
102 |
95 98 101
|
3eqtrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) = ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
103 |
102
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
104 |
|
ccatcl |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ∈ Word ( 𝐼 × 2o ) ) |
105 |
46 89 104
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ∈ Word ( 𝐼 × 2o ) ) |
106 |
76
|
s1cld |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
107 |
|
ccatass |
⊢ ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
108 |
105 106 51 107
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
109 |
|
ccatass |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ) ) |
110 |
46 89 106 109
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ) ) |
111 |
|
df-s2 |
⊢ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 = ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) |
112 |
111
|
oveq2i |
⊢ ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ) |
113 |
110 112
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ) |
114 |
113
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
115 |
103 108 114
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
116 |
73 88 115
|
3eqtrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
117 |
1 2 3 4
|
efgtf |
⊢ ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 → ( ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) = ( 𝑚 ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) , 𝑢 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 𝑚 , 𝑚 , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
118 |
117
|
simprd |
⊢ ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 → ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
119 |
55 118
|
syl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
120 |
119
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ) |
121 |
|
fnovrn |
⊢ ( ( ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
122 |
120 70 71 121
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
123 |
116 122
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
124 |
1 2 3 4
|
efgi2 |
⊢ ( ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 ∧ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
125 |
55 123 124
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
126 |
45 125
|
ersym |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
127 |
45
|
ertr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∧ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) |
128 |
126 127
|
mpand |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) |
129 |
128
|
expcom |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( 𝐴 ∈ 𝑊 → ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) ) |
130 |
129
|
a2d |
⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( ( 𝐴 ∈ 𝑊 → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) → ( 𝐴 ∈ 𝑊 → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) ) |
131 |
17 23 29 35 44 130
|
wrdind |
⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) ) |
132 |
7 131
|
mpcom |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) |