Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | efgmval.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
Assertion | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgmval.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
2 | 2oconcl | ⊢ ( 𝑧 ∈ 2o → ( 1o ∖ 𝑧 ) ∈ 2o ) | |
3 | opelxpi | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ ( 1o ∖ 𝑧 ) ∈ 2o ) → 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ∈ ( 𝐼 × 2o ) ) | |
4 | 2 3 | sylan2 | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o ) → 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ∈ ( 𝐼 × 2o ) ) |
5 | 4 | rgen2 | ⊢ ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ∈ ( 𝐼 × 2o ) |
6 | 1 | fmpo | ⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 2o 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ∈ ( 𝐼 × 2o ) ↔ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) |
7 | 5 6 | mpbi | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |