Metamath Proof Explorer


Theorem efgmval

Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypothesis efgmval.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
Assertion efgmval ( ( 𝐴𝐼𝐵 ∈ 2o ) → ( 𝐴 𝑀 𝐵 ) = ⟨ 𝐴 , ( 1o𝐵 ) ⟩ )

Proof

Step Hyp Ref Expression
1 efgmval.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
2 opeq1 ( 𝑎 = 𝐴 → ⟨ 𝑎 , ( 1o𝑏 ) ⟩ = ⟨ 𝐴 , ( 1o𝑏 ) ⟩ )
3 difeq2 ( 𝑏 = 𝐵 → ( 1o𝑏 ) = ( 1o𝐵 ) )
4 3 opeq2d ( 𝑏 = 𝐵 → ⟨ 𝐴 , ( 1o𝑏 ) ⟩ = ⟨ 𝐴 , ( 1o𝐵 ) ⟩ )
5 opeq1 ( 𝑦 = 𝑎 → ⟨ 𝑦 , ( 1o𝑧 ) ⟩ = ⟨ 𝑎 , ( 1o𝑧 ) ⟩ )
6 difeq2 ( 𝑧 = 𝑏 → ( 1o𝑧 ) = ( 1o𝑏 ) )
7 6 opeq2d ( 𝑧 = 𝑏 → ⟨ 𝑎 , ( 1o𝑧 ) ⟩ = ⟨ 𝑎 , ( 1o𝑏 ) ⟩ )
8 5 7 cbvmpov ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) = ( 𝑎𝐼 , 𝑏 ∈ 2o ↦ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ )
9 1 8 eqtri 𝑀 = ( 𝑎𝐼 , 𝑏 ∈ 2o ↦ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ )
10 opex 𝐴 , ( 1o𝐵 ) ⟩ ∈ V
11 2 4 9 10 ovmpo ( ( 𝐴𝐼𝐵 ∈ 2o ) → ( 𝐴 𝑀 𝐵 ) = ⟨ 𝐴 , ( 1o𝐵 ) ⟩ )