Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
2on0 |
⊢ 2o ≠ ∅ |
3 |
|
dmxp |
⊢ ( 2o ≠ ∅ → dom ( 𝐼 × 2o ) = 𝐼 ) |
4 |
2 3
|
ax-mp |
⊢ dom ( 𝐼 × 2o ) = 𝐼 |
5 |
|
elfvex |
⊢ ( 𝐴 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) ∈ V ) |
6 |
5 1
|
eleq2s |
⊢ ( 𝐴 ∈ 𝑊 → Word ( 𝐼 × 2o ) ∈ V ) |
7 |
|
wrdexb |
⊢ ( ( 𝐼 × 2o ) ∈ V ↔ Word ( 𝐼 × 2o ) ∈ V ) |
8 |
6 7
|
sylibr |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 × 2o ) ∈ V ) |
9 |
8
|
dmexd |
⊢ ( 𝐴 ∈ 𝑊 → dom ( 𝐼 × 2o ) ∈ V ) |
10 |
4 9
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑊 → 𝐼 ∈ V ) |
11 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
12 |
6 11
|
syl |
⊢ ( 𝐴 ∈ 𝑊 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
13 |
1 12
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
14 |
10 13
|
jca |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |