Metamath Proof Explorer


Theorem efgrcl

Description: Lemma for efgval . (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
Assertion efgrcl ( 𝐴𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 2on0 2o ≠ ∅
3 dmxp ( 2o ≠ ∅ → dom ( 𝐼 × 2o ) = 𝐼 )
4 2 3 ax-mp dom ( 𝐼 × 2o ) = 𝐼
5 elfvex ( 𝐴 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) ∈ V )
6 5 1 eleq2s ( 𝐴𝑊 → Word ( 𝐼 × 2o ) ∈ V )
7 wrdexb ( ( 𝐼 × 2o ) ∈ V ↔ Word ( 𝐼 × 2o ) ∈ V )
8 6 7 sylibr ( 𝐴𝑊 → ( 𝐼 × 2o ) ∈ V )
9 8 dmexd ( 𝐴𝑊 → dom ( 𝐼 × 2o ) ∈ V )
10 4 9 eqeltrrid ( 𝐴𝑊𝐼 ∈ V )
11 fvi ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
12 6 11 syl ( 𝐴𝑊 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
13 1 12 eqtrid ( 𝐴𝑊𝑊 = Word ( 𝐼 × 2o ) )
14 10 13 jca ( 𝐴𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )