| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
2on0 |
⊢ 2o ≠ ∅ |
| 3 |
|
dmxp |
⊢ ( 2o ≠ ∅ → dom ( 𝐼 × 2o ) = 𝐼 ) |
| 4 |
2 3
|
ax-mp |
⊢ dom ( 𝐼 × 2o ) = 𝐼 |
| 5 |
|
elfvex |
⊢ ( 𝐴 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) ∈ V ) |
| 6 |
5 1
|
eleq2s |
⊢ ( 𝐴 ∈ 𝑊 → Word ( 𝐼 × 2o ) ∈ V ) |
| 7 |
|
wrdexb |
⊢ ( ( 𝐼 × 2o ) ∈ V ↔ Word ( 𝐼 × 2o ) ∈ V ) |
| 8 |
6 7
|
sylibr |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 × 2o ) ∈ V ) |
| 9 |
8
|
dmexd |
⊢ ( 𝐴 ∈ 𝑊 → dom ( 𝐼 × 2o ) ∈ V ) |
| 10 |
4 9
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑊 → 𝐼 ∈ V ) |
| 11 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 12 |
6 11
|
syl |
⊢ ( 𝐴 ∈ 𝑊 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 13 |
1 12
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 14 |
10 13
|
jca |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |