Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
1 2 3 4 5 6
|
efgsfo |
⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |
8 |
|
fof |
⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → 𝑆 : dom 𝑆 ⟶ 𝑊 ) |
9 |
7 8
|
ax-mp |
⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
10 |
9
|
ffvelrni |
⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐵 ) ∈ 𝑊 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) ∈ 𝑊 ) |
12 |
1 2 3 4 5 6
|
efgredeu |
⊢ ( ( 𝑆 ‘ 𝐵 ) ∈ 𝑊 → ∃! 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ) |
13 |
|
reurmo |
⊢ ( ∃! 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) → ∃* 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ) |
14 |
11 12 13
|
3syl |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ∃* 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ) |
15 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑖 − 1 ) ) ) ) ) |
16 |
15
|
simp2bi |
⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∈ 𝐷 ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) ∈ 𝐷 ) |
18 |
1 2
|
efger |
⊢ ∼ Er 𝑊 |
19 |
18
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ∼ Er 𝑊 ) |
20 |
1 2 3 4 5 6
|
efgsrel |
⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐴 ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐴 ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
23 |
19 21 22
|
ertrd |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
24 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐵 ∈ dom 𝑆 ↔ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐵 ) ) ( 𝐵 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( 𝑖 − 1 ) ) ) ) ) |
25 |
24
|
simp2bi |
⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝐵 ‘ 0 ) ∈ 𝐷 ) |
26 |
25
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐵 ‘ 0 ) ∈ 𝐷 ) |
27 |
1 2 3 4 5 6
|
efgsrel |
⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
29 |
|
breq1 |
⊢ ( 𝑑 = ( 𝐴 ‘ 0 ) → ( 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ) |
30 |
|
breq1 |
⊢ ( 𝑑 = ( 𝐵 ‘ 0 ) → ( 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ) |
31 |
29 30
|
rmoi |
⊢ ( ( ∃* 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ∧ ( ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ∧ ( ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
32 |
14 17 23 26 28 31
|
syl122anc |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
33 |
18
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ∼ Er 𝑊 ) |
34 |
20
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐴 ) ) |
35 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
36 |
27
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
37 |
35 36
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
38 |
33 34 37
|
ertr3d |
⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
39 |
32 38
|
impbida |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |