Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
efgredlem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
8 |
|
efgredlem.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) |
9 |
|
efgredlem.3 |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) |
10 |
|
efgredlem.4 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) |
11 |
|
efgredlem.5 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
12 |
|
efgredlemb.k |
⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) |
13 |
|
efgredlemb.l |
⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) |
14 |
|
efgredlemb.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
15 |
|
efgredlemb.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
16 |
|
efgredlemb.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) |
17 |
|
efgredlemb.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) |
18 |
|
efgredlemb.6 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) |
19 |
|
efgredlemb.7 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) |
20 |
|
efgredlemb.8 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) |
21 |
|
fveq2 |
⊢ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |
22 |
21
|
breq2d |
⊢ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) |
23 |
22
|
imbi1d |
⊢ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
24 |
23
|
2ralbidv |
⊢ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
25 |
10 24
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
26 |
7 25
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐵 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
27 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐴 ) ) |
28 |
|
eqcom |
⊢ ( ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ↔ ( 𝐵 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
29 |
11 28
|
sylnib |
⊢ ( 𝜑 → ¬ ( 𝐵 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
30 |
|
eqcom |
⊢ ( ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ↔ ( 𝐵 ‘ 𝐿 ) = ( 𝐴 ‘ 𝐾 ) ) |
31 |
20 30
|
sylnib |
⊢ ( 𝜑 → ¬ ( 𝐵 ‘ 𝐿 ) = ( 𝐴 ‘ 𝐾 ) ) |
32 |
1 2 3 4 5 6 26 9 8 27 29 13 12 15 14 17 16 19 18 31
|
efgredlemc |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℤ≥ ‘ 𝑃 ) → ( 𝐵 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) ) |
33 |
32 28
|
syl6ibr |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℤ≥ ‘ 𝑃 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
efgredlemc |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
35 |
14
|
elfzelzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
36 |
15
|
elfzelzd |
⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
37 |
|
uztric |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 𝑄 ∈ ( ℤ≥ ‘ 𝑃 ) ∨ 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
38 |
35 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℤ≥ ‘ 𝑃 ) ∨ 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
39 |
33 34 38
|
mpjaod |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
40 |
39 11
|
pm2.65i |
⊢ ¬ 𝜑 |