| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
|
efgredlem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 8 |
|
efgredlem.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) |
| 9 |
|
efgredlem.3 |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) |
| 10 |
|
efgredlem.4 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) |
| 11 |
|
efgredlem.5 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 12 |
|
efgredlemb.k |
⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) |
| 13 |
|
efgredlemb.l |
⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) |
| 14 |
|
efgredlemb.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 15 |
|
efgredlemb.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 16 |
|
efgredlemb.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) |
| 17 |
|
efgredlemb.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) |
| 18 |
|
efgredlemb.6 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) |
| 19 |
|
efgredlemb.7 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) |
| 20 |
|
efgredlemb.8 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 21 |
|
efgredlemd.9 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) |
| 22 |
|
efgredlemd.c |
⊢ ( 𝜑 → 𝐶 ∈ dom 𝑆 ) |
| 23 |
|
efgredlemd.sc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 24 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐶 ∈ dom 𝑆 ↔ ( 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐶 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐶 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 25 |
24
|
simp1bi |
⊢ ( 𝐶 ∈ dom 𝑆 → 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 26 |
22 25
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 27 |
26
|
eldifad |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝑊 ) |
| 28 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 29 |
28
|
simp1bi |
⊢ ( 𝐴 ∈ dom 𝑆 → 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 30 |
8 29
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 31 |
30
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ Word 𝑊 ) |
| 32 |
|
wrdf |
⊢ ( 𝐴 ∈ Word 𝑊 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 ) |
| 34 |
|
fzossfz |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 35 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑊 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 36 |
31 35
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 37 |
36
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 38 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 40 |
34 39
|
sseqtrrid |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 41 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) ) |
| 42 |
41
|
simpld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
| 43 |
|
fzo0end |
⊢ ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 45 |
12 44
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 46 |
40 45
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 47 |
33 46
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ) |
| 48 |
47
|
s1cld |
⊢ ( 𝜑 → 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ∈ Word 𝑊 ) |
| 49 |
|
eldifsn |
⊢ ( 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐶 ∈ Word 𝑊 ∧ 𝐶 ≠ ∅ ) ) |
| 50 |
|
lennncl |
⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ 𝐶 ≠ ∅ ) → ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
| 51 |
49 50
|
sylbi |
⊢ ( 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
| 52 |
26 51
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
| 53 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ↔ ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
| 54 |
52 53
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 55 |
|
ccatval1 |
⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 56 |
27 48 54 55
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 57 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐵 ∈ dom 𝑆 ↔ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐵 ) ) ( 𝐵 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 58 |
57
|
simp1bi |
⊢ ( 𝐵 ∈ dom 𝑆 → 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 59 |
9 58
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 60 |
59
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ Word 𝑊 ) |
| 61 |
|
wrdf |
⊢ ( 𝐵 ∈ Word 𝑊 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝑊 ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝑊 ) |
| 63 |
|
fzossfz |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 64 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 65 |
60 64
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 66 |
65
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 67 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) = ( 0 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) = ( 0 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 69 |
63 68
|
sseqtrrid |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 70 |
41
|
simprd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) |
| 71 |
|
fzo0end |
⊢ ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ → ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 73 |
13 72
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 74 |
69 73
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 75 |
62 74
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) |
| 76 |
75
|
s1cld |
⊢ ( 𝜑 → 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ∈ Word 𝑊 ) |
| 77 |
|
ccatval1 |
⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 78 |
27 76 54 77
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 79 |
56 78
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) |
| 80 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
| 81 |
1 80
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 82 |
81 47
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ) |
| 83 |
|
lencl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 84 |
82 83
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 85 |
84
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℝ ) |
| 86 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 87 |
|
ltaddrp |
⊢ ( ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) < ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 88 |
85 86 87
|
sylancl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) < ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 89 |
36
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 90 |
89
|
lem1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 91 |
|
fznn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
| 92 |
37 91
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
| 93 |
42 90 92
|
mpbir2and |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 94 |
1 2 3 4 5 6
|
efgsres |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 95 |
8 93 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 96 |
1 2 3 4 5 6
|
efgsval |
⊢ ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ) ) |
| 97 |
95 96
|
syl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ) ) |
| 98 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐴 ) ) |
| 99 |
98 93
|
sselid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
| 100 |
|
pfxres |
⊢ ( ( 𝐴 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) |
| 101 |
31 99 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) |
| 102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) = ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) |
| 103 |
|
pfxlen |
⊢ ( ( 𝐴 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 104 |
31 99 103
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 105 |
102 104
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 106 |
105
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
| 107 |
106 12
|
eqtr4di |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) = 𝐾 ) |
| 108 |
107
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 𝐾 ) ) |
| 109 |
45
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 𝐾 ) = ( 𝐴 ‘ 𝐾 ) ) |
| 110 |
97 108 109
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 111 |
110
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) = ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) |
| 112 |
1 2 3 4 5 6
|
efgsdmi |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
| 113 |
8 42 112
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
| 114 |
12
|
fveq2i |
⊢ ( 𝐴 ‘ 𝐾 ) = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
| 115 |
114
|
fveq2i |
⊢ ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
| 116 |
115
|
rneqi |
⊢ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
| 117 |
113 116
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) |
| 118 |
1 2 3 4
|
efgtlen |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 119 |
47 117 118
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 120 |
88 111 119
|
3brtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 121 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
efgredleme |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| 122 |
121
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 123 |
1 2 3 4 5 6
|
efgsp1 |
⊢ ( ( 𝐶 ∈ dom 𝑆 ∧ ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) → ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) |
| 124 |
22 122 123
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) |
| 125 |
1 2 3 4 5 6
|
efgsval2 |
⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 126 |
27 47 124 125
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 127 |
110 126
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) ) |
| 128 |
|
2fveq3 |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) ) |
| 129 |
128
|
breq1d |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 130 |
|
fveqeq2 |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ) ) |
| 131 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( 𝑎 ‘ 0 ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) ) |
| 132 |
131
|
eqeq1d |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 133 |
130 132
|
imbi12d |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 134 |
129 133
|
imbi12d |
⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 135 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) ) |
| 136 |
135
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) ) ) |
| 137 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( 𝑏 ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) |
| 138 |
137
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) |
| 139 |
136 138
|
imbi12d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) |
| 140 |
139
|
imbi2d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) ) |
| 141 |
134 140
|
rspc2va |
⊢ ( ( ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 ∧ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) |
| 142 |
95 124 7 141
|
syl21anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) |
| 143 |
120 127 142
|
mp2d |
⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) |
| 144 |
81 75
|
sselid |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ) |
| 145 |
|
lencl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 146 |
144 145
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 147 |
146
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℝ ) |
| 148 |
|
ltaddrp |
⊢ ( ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) < ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 149 |
147 86 148
|
sylancl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) < ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 150 |
65
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 151 |
150
|
lem1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 152 |
|
fznn |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℤ → ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) ) |
| 153 |
66 152
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) ) |
| 154 |
70 151 153
|
mpbir2and |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 155 |
1 2 3 4 5 6
|
efgsres |
⊢ ( ( 𝐵 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 156 |
9 154 155
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 157 |
1 2 3 4 5 6
|
efgsval |
⊢ ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) ) ) |
| 158 |
156 157
|
syl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) ) ) |
| 159 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐵 ) ) |
| 160 |
159 154
|
sselid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 161 |
|
pfxres |
⊢ ( ( 𝐵 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) |
| 162 |
60 160 161
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) |
| 163 |
162
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) = ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) |
| 164 |
|
pfxlen |
⊢ ( ( 𝐵 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 165 |
60 160 164
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 166 |
163 165
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 167 |
166
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) |
| 168 |
167 13
|
eqtr4di |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) = 𝐿 ) |
| 169 |
168
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 𝐿 ) ) |
| 170 |
73
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 𝐿 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 171 |
158 169 170
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 172 |
171
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 173 |
1 2 3 4 5 6
|
efgsdmi |
⊢ ( ( 𝐵 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 174 |
9 70 173
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 175 |
10 174
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 176 |
13
|
fveq2i |
⊢ ( 𝐵 ‘ 𝐿 ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) |
| 177 |
176
|
fveq2i |
⊢ ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
| 178 |
177
|
rneqi |
⊢ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
| 179 |
175 178
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 180 |
1 2 3 4
|
efgtlen |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 181 |
75 179 180
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 182 |
149 172 181
|
3brtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 183 |
121
|
simprd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 184 |
1 2 3 4 5 6
|
efgsp1 |
⊢ ( ( 𝐶 ∈ dom 𝑆 ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) → ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) |
| 185 |
22 183 184
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) |
| 186 |
1 2 3 4 5 6
|
efgsval2 |
⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 187 |
27 75 185 186
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 188 |
171 187
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) ) |
| 189 |
|
2fveq3 |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) ) |
| 190 |
189
|
breq1d |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 191 |
|
fveqeq2 |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ) ) |
| 192 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( 𝑎 ‘ 0 ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) ) |
| 193 |
192
|
eqeq1d |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 194 |
191 193
|
imbi12d |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 195 |
190 194
|
imbi12d |
⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 196 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) ) |
| 197 |
196
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) ) ) |
| 198 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( 𝑏 ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) |
| 199 |
198
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) |
| 200 |
197 199
|
imbi12d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) |
| 201 |
200
|
imbi2d |
⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) ) |
| 202 |
195 201
|
rspc2va |
⊢ ( ( ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 ∧ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) |
| 203 |
156 185 7 202
|
syl21anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) |
| 204 |
182 188 203
|
mp2d |
⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) |
| 205 |
79 143 204
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) ) |
| 206 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
| 207 |
42 206
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 208 |
207
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 209 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) |
| 210 |
70 209
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 211 |
210
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 212 |
205 208 211
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |