| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
|
efgredlem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 8 |
|
efgredlem.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) |
| 9 |
|
efgredlem.3 |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) |
| 10 |
|
efgredlem.4 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) |
| 11 |
|
efgredlem.5 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 12 |
|
efgredlemb.k |
⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) |
| 13 |
|
efgredlemb.l |
⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) |
| 14 |
|
efgredlemb.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 15 |
|
efgredlemb.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 16 |
|
efgredlemb.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) |
| 17 |
|
efgredlemb.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) |
| 18 |
|
efgredlemb.6 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) |
| 19 |
|
efgredlemb.7 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) |
| 20 |
|
efgredlemb.8 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 21 |
|
efgredlemd.9 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) |
| 22 |
|
efgredlemd.c |
⊢ ( 𝜑 → 𝐶 ∈ dom 𝑆 ) |
| 23 |
|
efgredlemd.sc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 24 |
1 2 3 4 5 6
|
efgsf |
⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 25 |
24
|
fdmi |
⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 26 |
25
|
feq2i |
⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 27 |
24 26
|
mpbir |
⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 28 |
27
|
ffvelcdmi |
⊢ ( 𝐶 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ) |
| 29 |
22 28
|
syl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ) |
| 30 |
|
elfzuz |
⊢ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) → 𝑄 ∈ ( ℤ≥ ‘ 0 ) ) |
| 31 |
15 30
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( ℤ≥ ‘ 0 ) ) |
| 32 |
23
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) = ( ♯ ‘ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 33 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
| 34 |
1 33
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
efgredlemf |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) ) |
| 36 |
35
|
simprd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) |
| 37 |
34 36
|
sselid |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ) |
| 38 |
|
pfxcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) |
| 40 |
35
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ) |
| 41 |
34 40
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ) |
| 42 |
|
swrdcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 44 |
|
ccatlen |
⊢ ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 45 |
39 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 46 |
|
pfxlen |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) = 𝑄 ) |
| 47 |
37 15 46
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) = 𝑄 ) |
| 48 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 49 |
|
uzaddcl |
⊢ ( ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ 2 ∈ ℕ0 ) → ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 50 |
31 48 49
|
sylancl |
⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 51 |
|
elfzuz3 |
⊢ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) |
| 52 |
14 51
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) |
| 53 |
|
uztrn |
⊢ ( ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) |
| 54 |
52 21 53
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) |
| 55 |
|
elfzuzb |
⊢ ( ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ↔ ( ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) ) |
| 56 |
50 54 55
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 57 |
|
lencl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 58 |
41 57
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 59 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 60 |
58 59
|
eleqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 61 |
|
eluzfz2 |
⊢ ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 63 |
|
swrdlen |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) |
| 64 |
41 56 62 63
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) |
| 65 |
47 64
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 𝑄 + ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) ) |
| 66 |
15
|
elfzelzd |
⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
| 67 |
66
|
zcnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 68 |
58
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℂ ) |
| 69 |
|
2z |
⊢ 2 ∈ ℤ |
| 70 |
|
zaddcl |
⊢ ( ( 𝑄 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑄 + 2 ) ∈ ℤ ) |
| 71 |
66 69 70
|
sylancl |
⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ℤ ) |
| 72 |
71
|
zcnd |
⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ℂ ) |
| 73 |
67 68 72
|
addsubassd |
⊢ ( 𝜑 → ( ( 𝑄 + ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) − ( 𝑄 + 2 ) ) = ( 𝑄 + ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) ) |
| 74 |
|
2cn |
⊢ 2 ∈ ℂ |
| 75 |
74
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 76 |
67 68 75
|
pnpcand |
⊢ ( 𝜑 → ( ( 𝑄 + ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) − ( 𝑄 + 2 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ) |
| 77 |
65 73 76
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ) |
| 78 |
32 45 77
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ) |
| 79 |
14
|
elfzelzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 80 |
|
zsubcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑃 − 2 ) ∈ ℤ ) |
| 81 |
79 69 80
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ℤ ) |
| 82 |
69
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 83 |
79
|
zcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 84 |
|
npcan |
⊢ ( ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑃 − 2 ) + 2 ) = 𝑃 ) |
| 85 |
83 74 84
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑃 − 2 ) + 2 ) = 𝑃 ) |
| 86 |
85
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑃 − 2 ) + 2 ) ) = ( ℤ≥ ‘ 𝑃 ) ) |
| 87 |
52 86
|
eleqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( ( 𝑃 − 2 ) + 2 ) ) ) |
| 88 |
|
eluzsub |
⊢ ( ( ( 𝑃 − 2 ) ∈ ℤ ∧ 2 ∈ ℤ ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( ( 𝑃 − 2 ) + 2 ) ) ) → ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 89 |
81 82 87 88
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 90 |
78 89
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 91 |
|
eluzsub |
⊢ ( ( 𝑄 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 92 |
66 82 21 91
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 93 |
|
uztrn |
⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 94 |
90 92 93
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 95 |
|
elfzuzb |
⊢ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
| 96 |
31 94 95
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| 97 |
1 2 3 4
|
efgtval |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑉 ∈ ( 𝐼 × 2o ) ) → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 98 |
29 96 17 97
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 99 |
|
pfxcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) |
| 100 |
41 99
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) |
| 101 |
|
wrd0 |
⊢ ∅ ∈ Word ( 𝐼 × 2o ) |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Word ( 𝐼 × 2o ) ) |
| 103 |
3
|
efgmf |
⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 104 |
103
|
ffvelcdmi |
⊢ ( 𝑉 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑉 ) ∈ ( 𝐼 × 2o ) ) |
| 105 |
17 104
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑉 ) ∈ ( 𝐼 × 2o ) ) |
| 106 |
17 105
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 107 |
66
|
zred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 108 |
|
nn0addge1 |
⊢ ( ( 𝑄 ∈ ℝ ∧ 2 ∈ ℕ0 ) → 𝑄 ≤ ( 𝑄 + 2 ) ) |
| 109 |
107 48 108
|
sylancl |
⊢ ( 𝜑 → 𝑄 ≤ ( 𝑄 + 2 ) ) |
| 110 |
|
eluz2 |
⊢ ( ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ↔ ( 𝑄 ∈ ℤ ∧ ( 𝑄 + 2 ) ∈ ℤ ∧ 𝑄 ≤ ( 𝑄 + 2 ) ) ) |
| 111 |
66 71 109 110
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 112 |
|
uztrn |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) → 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 113 |
21 111 112
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 114 |
|
elfzuzb |
⊢ ( 𝑄 ∈ ( 0 ... 𝑃 ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
| 115 |
31 113 114
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... 𝑃 ) ) |
| 116 |
|
ccatpfx |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ) |
| 117 |
41 115 14 116
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ) |
| 118 |
117
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 119 |
|
pfxcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ∈ Word ( 𝐼 × 2o ) ) |
| 120 |
41 119
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ∈ Word ( 𝐼 × 2o ) ) |
| 121 |
103
|
ffvelcdmi |
⊢ ( 𝑈 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑈 ) ∈ ( 𝐼 × 2o ) ) |
| 122 |
16 121
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑈 ) ∈ ( 𝐼 × 2o ) ) |
| 123 |
16 122
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 124 |
|
swrdcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 125 |
41 124
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 126 |
|
ccatass |
⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 127 |
120 123 125 126
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 128 |
1 2 3 4
|
efgtval |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ 𝑈 ∈ ( 𝐼 × 2o ) ) → ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) = ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 129 |
40 14 16 128
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) = ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 130 |
|
splval |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 131 |
40 14 14 123 130
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 132 |
18 129 131
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 133 |
1 2 3 4
|
efgtval |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ 𝑉 ∈ ( 𝐼 × 2o ) ) → ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) = ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 134 |
36 15 17 133
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) = ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 135 |
|
splval |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 136 |
36 15 15 106 135
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 137 |
19 134 136
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 138 |
10 132 137
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 139 |
118 127 138
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 140 |
|
swrdcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 141 |
41 140
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 142 |
|
ccatcl |
⊢ ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 143 |
123 125 142
|
syl2anc |
⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 144 |
|
ccatass |
⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) |
| 145 |
100 141 143 144
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) |
| 146 |
|
swrdcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 147 |
37 146
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 148 |
|
ccatass |
⊢ ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 149 |
39 106 147 148
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 150 |
139 145 149
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 151 |
|
ccatcl |
⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 152 |
141 143 151
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 153 |
|
ccatcl |
⊢ ( ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 154 |
106 147 153
|
syl2anc |
⊢ ( 𝜑 → ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 155 |
|
uztrn |
⊢ ( ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 156 |
52 113 155
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 157 |
|
elfzuzb |
⊢ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
| 158 |
31 156 157
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 159 |
|
pfxlen |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = 𝑄 ) |
| 160 |
41 158 159
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = 𝑄 ) |
| 161 |
160 47
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) ) |
| 162 |
|
ccatopth |
⊢ ( ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) ) |
| 163 |
100 152 39 154 161 162
|
syl221anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) ) |
| 164 |
150 163
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 165 |
164
|
simpld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) |
| 166 |
165
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 167 |
|
ccatrid |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) |
| 168 |
100 167
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) |
| 169 |
168
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 170 |
166 169 23
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 171 |
160
|
eqcomd |
⊢ ( 𝜑 → 𝑄 = ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) ) |
| 172 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 173 |
172
|
oveq2i |
⊢ ( 𝑄 + ( ♯ ‘ ∅ ) ) = ( 𝑄 + 0 ) |
| 174 |
67
|
addridd |
⊢ ( 𝜑 → ( 𝑄 + 0 ) = 𝑄 ) |
| 175 |
173 174
|
eqtr2id |
⊢ ( 𝜑 → 𝑄 = ( 𝑄 + ( ♯ ‘ ∅ ) ) ) |
| 176 |
100 102 43 106 170 171 175
|
splval2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 177 |
|
elfzuzb |
⊢ ( 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
| 178 |
31 111 177
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ) |
| 179 |
|
elfzuzb |
⊢ ( ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ↔ ( ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) ) |
| 180 |
50 21 179
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ) |
| 181 |
|
ccatswrd |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) |
| 182 |
41 178 180 14 181
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) |
| 183 |
182
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 184 |
|
swrdcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 185 |
41 184
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 186 |
|
swrdcl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 187 |
41 186
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 188 |
|
ccatass |
⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) |
| 189 |
185 187 143 188
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) |
| 190 |
164
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 191 |
183 189 190
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 192 |
|
ccatcl |
⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 193 |
187 143 192
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 194 |
|
swrdlen |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝑄 + 2 ) − 𝑄 ) ) |
| 195 |
41 178 56 194
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝑄 + 2 ) − 𝑄 ) ) |
| 196 |
|
pncan2 |
⊢ ( ( 𝑄 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑄 + 2 ) − 𝑄 ) = 2 ) |
| 197 |
67 74 196
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑄 + 2 ) − 𝑄 ) = 2 ) |
| 198 |
195 197
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = 2 ) |
| 199 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) = 2 |
| 200 |
198 199
|
eqtr4di |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ♯ ‘ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ) |
| 201 |
|
ccatopth |
⊢ ( ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ♯ ‘ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 202 |
185 193 106 147 200 201
|
syl221anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 203 |
191 202
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 204 |
203
|
simpld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) |
| 205 |
204
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ) |
| 206 |
|
ccatpfx |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ) |
| 207 |
41 178 56 206
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ) |
| 208 |
205 207
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ) |
| 209 |
208
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 210 |
|
ccatpfx |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 211 |
41 56 62 210
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 212 |
|
pfxid |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 213 |
41 212
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 214 |
209 211 213
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 215 |
98 176 214
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) = ( 𝐴 ‘ 𝐾 ) ) |
| 216 |
1 2 3 4
|
efgtf |
⊢ ( ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 217 |
29 216
|
syl |
⊢ ( 𝜑 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 218 |
217
|
simprd |
⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 219 |
218
|
ffnd |
⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ) |
| 220 |
|
fnovrn |
⊢ ( ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑉 ∈ ( 𝐼 × 2o ) ) → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 221 |
219 96 17 220
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 222 |
215 221
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 223 |
|
uztrn |
⊢ ( ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ∧ 𝑄 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 224 |
92 31 223
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 225 |
|
elfzuzb |
⊢ ( ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ↔ ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) ) |
| 226 |
224 90 225
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| 227 |
1 2 3 4
|
efgtval |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑈 ∈ ( 𝐼 × 2o ) ) → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 ( 𝑃 − 2 ) , ( 𝑃 − 2 ) , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 228 |
29 226 16 227
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 ( 𝑃 − 2 ) , ( 𝑃 − 2 ) , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 229 |
|
pfxcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 230 |
37 229
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 231 |
|
swrdcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 232 |
37 231
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 233 |
|
ccatswrd |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) |
| 234 |
41 180 14 62 233
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) |
| 235 |
203
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 236 |
|
elfzuzb |
⊢ ( 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) |
| 237 |
31 92 236
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ) |
| 238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
efgredlemg |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 239 |
238 52
|
eqeltrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) |
| 240 |
|
0le2 |
⊢ 0 ≤ 2 |
| 241 |
240
|
a1i |
⊢ ( 𝜑 → 0 ≤ 2 ) |
| 242 |
79
|
zred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 243 |
|
2re |
⊢ 2 ∈ ℝ |
| 244 |
|
subge02 |
⊢ ( ( 𝑃 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 0 ≤ 2 ↔ ( 𝑃 − 2 ) ≤ 𝑃 ) ) |
| 245 |
242 243 244
|
sylancl |
⊢ ( 𝜑 → ( 0 ≤ 2 ↔ ( 𝑃 − 2 ) ≤ 𝑃 ) ) |
| 246 |
241 245
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ≤ 𝑃 ) |
| 247 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ↔ ( ( 𝑃 − 2 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ ( 𝑃 − 2 ) ≤ 𝑃 ) ) |
| 248 |
81 79 246 247
|
syl3anbrc |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 249 |
|
uztrn |
⊢ ( ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 250 |
239 248 249
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 251 |
|
elfzuzb |
⊢ ( ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ↔ ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) ) |
| 252 |
224 250 251
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 253 |
|
lencl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 254 |
37 253
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 255 |
254 59
|
eleqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 256 |
|
eluzfz2 |
⊢ ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 257 |
255 256
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 258 |
|
ccatswrd |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 259 |
37 237 252 257 258
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 260 |
235 259
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 261 |
|
swrdcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 262 |
37 261
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 263 |
|
swrdcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 264 |
37 263
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 265 |
|
swrdlen |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 266 |
41 180 14 265
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 267 |
|
swrdlen |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝑃 − 2 ) − 𝑄 ) ) |
| 268 |
37 237 252 267
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝑃 − 2 ) − 𝑄 ) ) |
| 269 |
83 67 75
|
sub32d |
⊢ ( 𝜑 → ( ( 𝑃 − 𝑄 ) − 2 ) = ( ( 𝑃 − 2 ) − 𝑄 ) ) |
| 270 |
83 67 75
|
subsub4d |
⊢ ( 𝜑 → ( ( 𝑃 − 𝑄 ) − 2 ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 271 |
268 269 270
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 272 |
266 271
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ) |
| 273 |
|
ccatopth |
⊢ ( ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 274 |
187 143 262 264 272 273
|
syl221anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 275 |
260 274
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 276 |
275
|
simpld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) |
| 277 |
275
|
simprd |
⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 278 |
|
elfzuzb |
⊢ ( ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ↔ ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) ) |
| 279 |
224 248 278
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ) |
| 280 |
|
elfzuz |
⊢ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) → 𝑃 ∈ ( ℤ≥ ‘ 0 ) ) |
| 281 |
14 280
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 0 ) ) |
| 282 |
|
elfzuzb |
⊢ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) ) |
| 283 |
281 239 282
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 284 |
|
ccatswrd |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 285 |
37 279 283 257 284
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 286 |
277 285
|
eqtr4d |
⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 287 |
|
swrdcl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 288 |
37 287
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 289 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = 2 |
| 290 |
|
swrdlen |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑃 − 2 ) ) ) |
| 291 |
37 279 283 290
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑃 − 2 ) ) ) |
| 292 |
|
nncan |
⊢ ( ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝑃 − ( 𝑃 − 2 ) ) = 2 ) |
| 293 |
83 74 292
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 − ( 𝑃 − 2 ) ) = 2 ) |
| 294 |
291 293
|
eqtr2d |
⊢ ( 𝜑 → 2 = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) |
| 295 |
289 294
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) |
| 296 |
|
ccatopth |
⊢ ( ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) → ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 297 |
123 125 288 232 295 296
|
syl221anc |
⊢ ( 𝜑 → ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 298 |
286 297
|
mpbid |
⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 299 |
298
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 300 |
276 299
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 301 |
234 300
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 302 |
301
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 303 |
|
ccatass |
⊢ ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 304 |
39 262 232 303
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 305 |
302 304
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 306 |
|
ccatpfx |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) |
| 307 |
37 237 252 306
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) |
| 308 |
307
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 309 |
23 305 308
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 310 |
|
ccatrid |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ∈ Word ( 𝐼 × 2o ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) |
| 311 |
230 310
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) |
| 312 |
311
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 313 |
309 312
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 314 |
|
pfxlen |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) = ( 𝑃 − 2 ) ) |
| 315 |
37 252 314
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) = ( 𝑃 − 2 ) ) |
| 316 |
315
|
eqcomd |
⊢ ( 𝜑 → ( 𝑃 − 2 ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) ) |
| 317 |
172
|
oveq2i |
⊢ ( ( 𝑃 − 2 ) + ( ♯ ‘ ∅ ) ) = ( ( 𝑃 − 2 ) + 0 ) |
| 318 |
81
|
zcnd |
⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ℂ ) |
| 319 |
318
|
addridd |
⊢ ( 𝜑 → ( ( 𝑃 − 2 ) + 0 ) = ( 𝑃 − 2 ) ) |
| 320 |
317 319
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑃 − 2 ) = ( ( 𝑃 − 2 ) + ( ♯ ‘ ∅ ) ) ) |
| 321 |
230 102 232 123 313 316 320
|
splval2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) splice 〈 ( 𝑃 − 2 ) , ( 𝑃 − 2 ) , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 322 |
298
|
simpld |
⊢ ( 𝜑 → 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) |
| 323 |
322
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) |
| 324 |
|
ccatpfx |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ) |
| 325 |
37 279 283 324
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ) |
| 326 |
323 325
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ) |
| 327 |
326
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 328 |
|
ccatpfx |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 329 |
37 283 257 328
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 330 |
|
pfxid |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 331 |
37 330
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 332 |
327 329 331
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 333 |
228 321 332
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 334 |
|
fnovrn |
⊢ ( ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑈 ∈ ( 𝐼 × 2o ) ) → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 335 |
219 226 16 334
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 336 |
333 335
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 337 |
222 336
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |