Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
efgredlem.1 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
8 |
|
efgredlem.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) |
9 |
|
efgredlem.3 |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) |
10 |
|
efgredlem.4 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) |
11 |
|
efgredlem.5 |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
12 |
|
efgredlemb.k |
⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) |
13 |
|
efgredlemb.l |
⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) |
14 |
|
efgredlemb.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
15 |
|
efgredlemb.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
16 |
|
efgredlemb.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) |
17 |
|
efgredlemb.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) |
18 |
|
efgredlemb.6 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) |
19 |
|
efgredlemb.7 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) |
20 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
21 |
1 20
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
efgredlemf |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ) |
24 |
21 23
|
sselid |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ) |
25 |
|
lencl |
⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
27 |
26
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℂ ) |
28 |
22
|
simprd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) |
29 |
21 28
|
sselid |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ) |
30 |
|
lencl |
⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
32 |
31
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℂ ) |
33 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
34 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) ) |
35 |
34
|
simpld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
36 |
1 2 3 4 5 6
|
efgsdmi |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
37 |
8 35 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
38 |
12
|
fveq2i |
⊢ ( 𝐴 ‘ 𝐾 ) = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
39 |
38
|
fveq2i |
⊢ ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
40 |
39
|
rneqi |
⊢ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
41 |
37 40
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) |
42 |
1 2 3 4
|
efgtlen |
⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
43 |
23 41 42
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
44 |
34
|
simprd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) |
45 |
1 2 3 4 5 6
|
efgsdmi |
⊢ ( ( 𝐵 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
46 |
9 44 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
47 |
10 46
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
48 |
13
|
fveq2i |
⊢ ( 𝐵 ‘ 𝐿 ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) |
49 |
48
|
fveq2i |
⊢ ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
50 |
49
|
rneqi |
⊢ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
51 |
47 50
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
52 |
1 2 3 4
|
efgtlen |
⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
53 |
28 51 52
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
54 |
43 53
|
eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
55 |
27 32 33 54
|
addcan2ad |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |