Metamath Proof Explorer


Theorem efgrelex

Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
Assertion efgrelex ( 𝐴 𝐵 → ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
6 efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
7 eqid { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } = { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) }
8 1 2 3 4 5 6 7 efgrelexlemb ⊆ { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) }
9 8 ssbri ( 𝐴 𝐵𝐴 { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } 𝐵 )
10 1 2 3 4 5 6 7 efgrelexlema ( 𝐴 { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } 𝐵 ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) )
11 9 10 sylib ( 𝐴 𝐵 → ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) )