Metamath Proof Explorer


Theorem efgrelexlema

Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
efgrelexlem.1 𝐿 = { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) }
Assertion efgrelexlema ( 𝐴 𝐿 𝐵 ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 efgred.d 𝐷 = ( 𝑊 𝑥𝑊 ran ( 𝑇𝑥 ) )
6 efgred.s 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) )
7 efgrelexlem.1 𝐿 = { ⟨ 𝑖 , 𝑗 ⟩ ∣ ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) }
8 7 bropaex12 ( 𝐴 𝐿 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
9 n0i ( 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) → ¬ ( 𝑆 “ { 𝐴 } ) = ∅ )
10 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
11 imaeq2 ( { 𝐴 } = ∅ → ( 𝑆 “ { 𝐴 } ) = ( 𝑆 “ ∅ ) )
12 10 11 sylbi ( ¬ 𝐴 ∈ V → ( 𝑆 “ { 𝐴 } ) = ( 𝑆 “ ∅ ) )
13 ima0 ( 𝑆 “ ∅ ) = ∅
14 12 13 eqtrdi ( ¬ 𝐴 ∈ V → ( 𝑆 “ { 𝐴 } ) = ∅ )
15 9 14 nsyl2 ( 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) → 𝐴 ∈ V )
16 n0i ( 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) → ¬ ( 𝑆 “ { 𝐵 } ) = ∅ )
17 snprc ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ )
18 imaeq2 ( { 𝐵 } = ∅ → ( 𝑆 “ { 𝐵 } ) = ( 𝑆 “ ∅ ) )
19 17 18 sylbi ( ¬ 𝐵 ∈ V → ( 𝑆 “ { 𝐵 } ) = ( 𝑆 “ ∅ ) )
20 19 13 eqtrdi ( ¬ 𝐵 ∈ V → ( 𝑆 “ { 𝐵 } ) = ∅ )
21 16 20 nsyl2 ( 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) → 𝐵 ∈ V )
22 15 21 anim12i ( ( 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∧ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
23 22 a1d ( ( 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∧ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
24 23 rexlimivv ( ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
25 fveq1 ( 𝑐 = 𝑎 → ( 𝑐 ‘ 0 ) = ( 𝑎 ‘ 0 ) )
26 25 eqeq1d ( 𝑐 = 𝑎 → ( ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) )
27 fveq1 ( 𝑑 = 𝑏 → ( 𝑑 ‘ 0 ) = ( 𝑏 ‘ 0 ) )
28 27 eqeq2d ( 𝑑 = 𝑏 → ( ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) )
29 26 28 cbvrex2vw ( ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) )
30 sneq ( 𝑖 = 𝐴 → { 𝑖 } = { 𝐴 } )
31 30 imaeq2d ( 𝑖 = 𝐴 → ( 𝑆 “ { 𝑖 } ) = ( 𝑆 “ { 𝐴 } ) )
32 31 rexeqdv ( 𝑖 = 𝐴 → ( ∃ 𝑎 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) )
33 29 32 syl5bb ( 𝑖 = 𝐴 → ( ∃ 𝑐 ∈ ( 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) )
34 sneq ( 𝑗 = 𝐵 → { 𝑗 } = { 𝐵 } )
35 34 imaeq2d ( 𝑗 = 𝐵 → ( 𝑆 “ { 𝑗 } ) = ( 𝑆 “ { 𝐵 } ) )
36 35 rexeqdv ( 𝑗 = 𝐵 → ( ∃ 𝑏 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) )
37 36 rexbidv ( 𝑗 = 𝐵 → ( ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) )
38 33 37 7 brabg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐿 𝐵 ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) )
39 8 24 38 pm5.21nii ( 𝐴 𝐿 𝐵 ↔ ∃ 𝑎 ∈ ( 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) )