Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
efgrelexlem.1 |
⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } |
8 |
7
|
bropaex12 |
⊢ ( 𝐴 𝐿 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
9 |
|
n0i |
⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) → ¬ ( ◡ 𝑆 “ { 𝐴 } ) = ∅ ) |
10 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
11 |
|
imaeq2 |
⊢ ( { 𝐴 } = ∅ → ( ◡ 𝑆 “ { 𝐴 } ) = ( ◡ 𝑆 “ ∅ ) ) |
12 |
10 11
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ( ◡ 𝑆 “ { 𝐴 } ) = ( ◡ 𝑆 “ ∅ ) ) |
13 |
|
ima0 |
⊢ ( ◡ 𝑆 “ ∅ ) = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( ◡ 𝑆 “ { 𝐴 } ) = ∅ ) |
15 |
9 14
|
nsyl2 |
⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) → 𝐴 ∈ V ) |
16 |
|
n0i |
⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) → ¬ ( ◡ 𝑆 “ { 𝐵 } ) = ∅ ) |
17 |
|
snprc |
⊢ ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ ) |
18 |
|
imaeq2 |
⊢ ( { 𝐵 } = ∅ → ( ◡ 𝑆 “ { 𝐵 } ) = ( ◡ 𝑆 “ ∅ ) ) |
19 |
17 18
|
sylbi |
⊢ ( ¬ 𝐵 ∈ V → ( ◡ 𝑆 “ { 𝐵 } ) = ( ◡ 𝑆 “ ∅ ) ) |
20 |
19 13
|
eqtrdi |
⊢ ( ¬ 𝐵 ∈ V → ( ◡ 𝑆 “ { 𝐵 } ) = ∅ ) |
21 |
16 20
|
nsyl2 |
⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) → 𝐵 ∈ V ) |
22 |
15 21
|
anim12i |
⊢ ( ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
23 |
22
|
a1d |
⊢ ( ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
24 |
23
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
25 |
|
fveq1 |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) |
27 |
|
fveq1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
28 |
27
|
eqeq2d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
29 |
26 28
|
cbvrex2vw |
⊢ ( ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
30 |
|
sneq |
⊢ ( 𝑖 = 𝐴 → { 𝑖 } = { 𝐴 } ) |
31 |
30
|
imaeq2d |
⊢ ( 𝑖 = 𝐴 → ( ◡ 𝑆 “ { 𝑖 } ) = ( ◡ 𝑆 “ { 𝐴 } ) ) |
32 |
31
|
rexeqdv |
⊢ ( 𝑖 = 𝐴 → ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
33 |
29 32
|
syl5bb |
⊢ ( 𝑖 = 𝐴 → ( ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
34 |
|
sneq |
⊢ ( 𝑗 = 𝐵 → { 𝑗 } = { 𝐵 } ) |
35 |
34
|
imaeq2d |
⊢ ( 𝑗 = 𝐵 → ( ◡ 𝑆 “ { 𝑗 } ) = ( ◡ 𝑆 “ { 𝐵 } ) ) |
36 |
35
|
rexeqdv |
⊢ ( 𝑗 = 𝐵 → ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
37 |
36
|
rexbidv |
⊢ ( 𝑗 = 𝐵 → ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
38 |
33 37 7
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐿 𝐵 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
39 |
8 24 38
|
pm5.21nii |
⊢ ( 𝐴 𝐿 𝐵 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝐴 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝐵 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |