| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
|
efgrelexlem.1 |
⊢ 𝐿 = { 〈 𝑖 , 𝑗 〉 ∣ ∃ 𝑐 ∈ ( ◡ 𝑆 “ { 𝑖 } ) ∃ 𝑑 ∈ ( ◡ 𝑆 “ { 𝑗 } ) ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) } |
| 8 |
1 2 3 4
|
efgval2 |
⊢ ∼ = ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } |
| 9 |
7
|
relopabiv |
⊢ Rel 𝐿 |
| 10 |
9
|
a1i |
⊢ ( ⊤ → Rel 𝐿 ) |
| 11 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑓 𝐿 𝑔 ) → 𝑓 𝐿 𝑔 ) |
| 12 |
|
eqcom |
⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 13 |
12
|
2rexbii |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 14 |
|
rexcom |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 15 |
13 14
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 16 |
1 2 3 4 5 6 7
|
efgrelexlema |
⊢ ( 𝑓 𝐿 𝑔 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 17 |
1 2 3 4 5 6 7
|
efgrelexlema |
⊢ ( 𝑔 𝐿 𝑓 ↔ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 18 |
15 16 17
|
3bitr4i |
⊢ ( 𝑓 𝐿 𝑔 ↔ 𝑔 𝐿 𝑓 ) |
| 19 |
11 18
|
sylib |
⊢ ( ( ⊤ ∧ 𝑓 𝐿 𝑔 ) → 𝑔 𝐿 𝑓 ) |
| 20 |
1 2 3 4 5 6 7
|
efgrelexlema |
⊢ ( 𝑔 𝐿 ℎ ↔ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 21 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ↔ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 22 |
1 2 3 4 5 6
|
efgsfo |
⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |
| 23 |
|
fofn |
⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → 𝑆 Fn dom 𝑆 ) |
| 24 |
22 23
|
ax-mp |
⊢ 𝑆 Fn dom 𝑆 |
| 25 |
|
fniniseg |
⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑔 ) ) ) |
| 26 |
24 25
|
ax-mp |
⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑔 ) ) |
| 27 |
|
fniniseg |
⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) ) |
| 28 |
24 27
|
ax-mp |
⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ↔ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) |
| 29 |
|
eqtr3 |
⊢ ( ( ( 𝑆 ‘ 𝑟 ) = 𝑔 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) → ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) |
| 30 |
1 2 3 4 5 6
|
efgred |
⊢ ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) → ( 𝑟 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 31 |
30
|
eqcomd |
⊢ ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 32 |
31
|
3expa |
⊢ ( ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝑟 ) = ( 𝑆 ‘ 𝑏 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 33 |
29 32
|
sylan2 |
⊢ ( ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ∧ ( ( 𝑆 ‘ 𝑟 ) = 𝑔 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 34 |
33
|
an4s |
⊢ ( ( ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑔 ) ∧ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑔 ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 35 |
26 28 34
|
syl2anb |
⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 36 |
|
eqeq2 |
⊢ ( ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ( ( 𝑏 ‘ 0 ) = ( 𝑟 ‘ 0 ) ↔ ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 37 |
35 36
|
syl5ibcom |
⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 38 |
37
|
reximdv |
⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 39 |
|
eqeq1 |
⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ↔ ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 40 |
39
|
rexbidv |
⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ↔ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ↔ ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑏 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) ) |
| 42 |
38 41
|
syl5ibrcom |
⊢ ( ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) ) |
| 43 |
42
|
rexlimdva |
⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) → ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → ( ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) ) |
| 44 |
43
|
impd |
⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) → ( ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) ) |
| 45 |
44
|
rexlimiv |
⊢ ( ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 46 |
45
|
reximi |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 47 |
21 46
|
sylbir |
⊢ ( ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ∧ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑔 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 48 |
16 20 47
|
syl2anb |
⊢ ( ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 49 |
1 2 3 4 5 6 7
|
efgrelexlema |
⊢ ( 𝑓 𝐿 ℎ ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { ℎ } ) ( 𝑎 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 50 |
48 49
|
sylibr |
⊢ ( ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) → 𝑓 𝐿 ℎ ) |
| 51 |
50
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑓 𝐿 𝑔 ∧ 𝑔 𝐿 ℎ ) ) → 𝑓 𝐿 ℎ ) |
| 52 |
|
eqid |
⊢ ( 𝑎 ‘ 0 ) = ( 𝑎 ‘ 0 ) |
| 53 |
|
fveq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) |
| 54 |
53
|
rspceeqv |
⊢ ( ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∧ ( 𝑎 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) → ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 55 |
52 54
|
mpan2 |
⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) → ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 56 |
55
|
pm4.71i |
⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ↔ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∧ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 57 |
|
fniniseg |
⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) ) |
| 58 |
24 57
|
ax-mp |
⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) |
| 59 |
56 58
|
bitr3i |
⊢ ( ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∧ ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) |
| 60 |
59
|
rexbii2 |
⊢ ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) |
| 61 |
1 2 3 4 5 6 7
|
efgrelexlema |
⊢ ( 𝑓 𝐿 𝑓 ↔ ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑓 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 62 |
|
forn |
⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → ran 𝑆 = 𝑊 ) |
| 63 |
22 62
|
ax-mp |
⊢ ran 𝑆 = 𝑊 |
| 64 |
63
|
eleq2i |
⊢ ( 𝑓 ∈ ran 𝑆 ↔ 𝑓 ∈ 𝑊 ) |
| 65 |
|
fvelrnb |
⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑓 ∈ ran 𝑆 ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) ) |
| 66 |
24 65
|
ax-mp |
⊢ ( 𝑓 ∈ ran 𝑆 ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) |
| 67 |
64 66
|
bitr3i |
⊢ ( 𝑓 ∈ 𝑊 ↔ ∃ 𝑎 ∈ dom 𝑆 ( 𝑆 ‘ 𝑎 ) = 𝑓 ) |
| 68 |
60 61 67
|
3bitr4ri |
⊢ ( 𝑓 ∈ 𝑊 ↔ 𝑓 𝐿 𝑓 ) |
| 69 |
68
|
a1i |
⊢ ( ⊤ → ( 𝑓 ∈ 𝑊 ↔ 𝑓 𝐿 𝑓 ) ) |
| 70 |
10 19 51 69
|
iserd |
⊢ ( ⊤ → 𝐿 Er 𝑊 ) |
| 71 |
70
|
mptru |
⊢ 𝐿 Er 𝑊 |
| 72 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑎 ∈ 𝑊 ) |
| 73 |
|
foelrn |
⊢ ( ( 𝑆 : dom 𝑆 –onto→ 𝑊 ∧ 𝑎 ∈ 𝑊 ) → ∃ 𝑟 ∈ dom 𝑆 𝑎 = ( 𝑆 ‘ 𝑟 ) ) |
| 74 |
22 72 73
|
sylancr |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → ∃ 𝑟 ∈ dom 𝑆 𝑎 = ( 𝑆 ‘ 𝑟 ) ) |
| 75 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ dom 𝑆 ) |
| 76 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑎 = ( 𝑆 ‘ 𝑟 ) ) |
| 77 |
76
|
eqcomd |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑆 ‘ 𝑟 ) = 𝑎 ) |
| 78 |
|
fniniseg |
⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑎 ) ) ) |
| 79 |
24 78
|
ax-mp |
⊢ ( 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ↔ ( 𝑟 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑟 ) = 𝑎 ) ) |
| 80 |
75 77 79
|
sylanbrc |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ) |
| 81 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) |
| 82 |
76
|
fveq2d |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) |
| 83 |
82
|
rneqd |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ran ( 𝑇 ‘ 𝑎 ) = ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) |
| 84 |
81 83
|
eleqtrd |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑏 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) |
| 85 |
1 2 3 4 5 6
|
efgsp1 |
⊢ ( ( 𝑟 ∈ dom 𝑆 ∧ 𝑏 ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ) |
| 86 |
75 84 85
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ) |
| 87 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝑟 ∈ dom 𝑆 ↔ ( 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝑟 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝑟 ) ) ( 𝑟 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝑟 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 88 |
87
|
simp1bi |
⊢ ( 𝑟 ∈ dom 𝑆 → 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 89 |
88
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 90 |
89
|
eldifad |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑟 ∈ Word 𝑊 ) |
| 91 |
1 2 3 4
|
efgtf |
⊢ ( 𝑎 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑎 ) = ( 𝑓 ∈ ( 0 ... ( ♯ ‘ 𝑎 ) ) , 𝑔 ∈ ( 𝐼 × 2o ) ↦ ( 𝑎 splice 〈 𝑓 , 𝑓 , 〈“ 𝑔 ( 𝑀 ‘ 𝑔 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ 𝑎 ) : ( ( 0 ... ( ♯ ‘ 𝑎 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 92 |
91
|
simprd |
⊢ ( 𝑎 ∈ 𝑊 → ( 𝑇 ‘ 𝑎 ) : ( ( 0 ... ( ♯ ‘ 𝑎 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 93 |
92
|
frnd |
⊢ ( 𝑎 ∈ 𝑊 → ran ( 𝑇 ‘ 𝑎 ) ⊆ 𝑊 ) |
| 94 |
93
|
sselda |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑏 ∈ 𝑊 ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 𝑏 ∈ 𝑊 ) |
| 96 |
1 2 3 4 5 6
|
efgsval2 |
⊢ ( ( 𝑟 ∈ Word 𝑊 ∧ 𝑏 ∈ 𝑊 ∧ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) |
| 97 |
90 95 86 96
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) |
| 98 |
|
fniniseg |
⊢ ( 𝑆 Fn dom 𝑆 → ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ↔ ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ∧ ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) ) ) |
| 99 |
24 98
|
ax-mp |
⊢ ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ↔ ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ dom 𝑆 ∧ ( 𝑆 ‘ ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ) = 𝑏 ) ) |
| 100 |
86 97 99
|
sylanbrc |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ) |
| 101 |
95
|
s1cld |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 〈“ 𝑏 ”〉 ∈ Word 𝑊 ) |
| 102 |
|
eldifsn |
⊢ ( 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅ ) ) |
| 103 |
|
lennncl |
⊢ ( ( 𝑟 ∈ Word 𝑊 ∧ 𝑟 ≠ ∅ ) → ( ♯ ‘ 𝑟 ) ∈ ℕ ) |
| 104 |
102 103
|
sylbi |
⊢ ( 𝑟 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝑟 ) ∈ ℕ ) |
| 105 |
89 104
|
syl |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( ♯ ‘ 𝑟 ) ∈ ℕ ) |
| 106 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ↔ ( ♯ ‘ 𝑟 ) ∈ ℕ ) |
| 107 |
105 106
|
sylibr |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ) |
| 108 |
|
ccatval1 |
⊢ ( ( 𝑟 ∈ Word 𝑊 ∧ 〈“ 𝑏 ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ) → ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 109 |
90 101 107 108
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) = ( 𝑟 ‘ 0 ) ) |
| 110 |
109
|
eqcomd |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ( 𝑟 ‘ 0 ) = ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) ) |
| 111 |
|
fveq1 |
⊢ ( 𝑠 = ( 𝑟 ++ 〈“ 𝑏 ”〉 ) → ( 𝑠 ‘ 0 ) = ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) ) |
| 112 |
111
|
rspceeqv |
⊢ ( ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ∈ ( ◡ 𝑆 “ { 𝑏 } ) ∧ ( 𝑟 ‘ 0 ) = ( ( 𝑟 ++ 〈“ 𝑏 ”〉 ) ‘ 0 ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 113 |
100 110 112
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) ∧ ( 𝑟 ∈ dom 𝑆 ∧ 𝑎 = ( 𝑆 ‘ 𝑟 ) ) ) → ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 114 |
74 80 113
|
reximssdv |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 115 |
1 2 3 4 5 6 7
|
efgrelexlema |
⊢ ( 𝑎 𝐿 𝑏 ↔ ∃ 𝑟 ∈ ( ◡ 𝑆 “ { 𝑎 } ) ∃ 𝑠 ∈ ( ◡ 𝑆 “ { 𝑏 } ) ( 𝑟 ‘ 0 ) = ( 𝑠 ‘ 0 ) ) |
| 116 |
114 115
|
sylibr |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑎 𝐿 𝑏 ) |
| 117 |
|
vex |
⊢ 𝑏 ∈ V |
| 118 |
|
vex |
⊢ 𝑎 ∈ V |
| 119 |
117 118
|
elec |
⊢ ( 𝑏 ∈ [ 𝑎 ] 𝐿 ↔ 𝑎 𝐿 𝑏 ) |
| 120 |
116 119
|
sylibr |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) ) → 𝑏 ∈ [ 𝑎 ] 𝐿 ) |
| 121 |
120
|
ex |
⊢ ( 𝑎 ∈ 𝑊 → ( 𝑏 ∈ ran ( 𝑇 ‘ 𝑎 ) → 𝑏 ∈ [ 𝑎 ] 𝐿 ) ) |
| 122 |
121
|
ssrdv |
⊢ ( 𝑎 ∈ 𝑊 → ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) |
| 123 |
122
|
rgen |
⊢ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 |
| 124 |
1
|
fvexi |
⊢ 𝑊 ∈ V |
| 125 |
|
erex |
⊢ ( 𝐿 Er 𝑊 → ( 𝑊 ∈ V → 𝐿 ∈ V ) ) |
| 126 |
71 124 125
|
mp2 |
⊢ 𝐿 ∈ V |
| 127 |
|
ereq1 |
⊢ ( 𝑟 = 𝐿 → ( 𝑟 Er 𝑊 ↔ 𝐿 Er 𝑊 ) ) |
| 128 |
|
eceq2 |
⊢ ( 𝑟 = 𝐿 → [ 𝑎 ] 𝑟 = [ 𝑎 ] 𝐿 ) |
| 129 |
128
|
sseq2d |
⊢ ( 𝑟 = 𝐿 → ( ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ↔ ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) |
| 130 |
129
|
ralbidv |
⊢ ( 𝑟 = 𝐿 → ( ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ↔ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) |
| 131 |
127 130
|
anbi12d |
⊢ ( 𝑟 = 𝐿 → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) ) |
| 132 |
126 131
|
elab |
⊢ ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ↔ ( 𝐿 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝐿 ) ) |
| 133 |
71 123 132
|
mpbir2an |
⊢ 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } |
| 134 |
|
intss1 |
⊢ ( 𝐿 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } → ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ⊆ 𝐿 ) |
| 135 |
133 134
|
ax-mp |
⊢ ∩ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ⊆ [ 𝑎 ] 𝑟 ) } ⊆ 𝐿 |
| 136 |
8 135
|
eqsstri |
⊢ ∼ ⊆ 𝐿 |