| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | efgrelexlem.1 | ⊢ 𝐿  =  { 〈 𝑖 ,  𝑗 〉  ∣  ∃ 𝑐  ∈  ( ◡ 𝑆  “  { 𝑖 } ) ∃ 𝑑  ∈  ( ◡ 𝑆  “  { 𝑗 } ) ( 𝑐 ‘ 0 )  =  ( 𝑑 ‘ 0 ) } | 
						
							| 8 | 1 2 3 4 | efgval2 | ⊢  ∼   =  ∩  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) } | 
						
							| 9 | 7 | relopabiv | ⊢ Rel  𝐿 | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  Rel  𝐿 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ⊤  ∧  𝑓 𝐿 𝑔 )  →  𝑓 𝐿 𝑔 ) | 
						
							| 12 |  | eqcom | ⊢ ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 13 | 12 | 2rexbii | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 14 |  | rexcom | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 )  ↔  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑓 𝐿 𝑔  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑔 𝐿 𝑓  ↔  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 18 | 15 16 17 | 3bitr4i | ⊢ ( 𝑓 𝐿 𝑔  ↔  𝑔 𝐿 𝑓 ) | 
						
							| 19 | 11 18 | sylib | ⊢ ( ( ⊤  ∧  𝑓 𝐿 𝑔 )  →  𝑔 𝐿 𝑓 ) | 
						
							| 20 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑔 𝐿 ℎ  ↔  ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 21 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ∧  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) )  ↔  ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ∧  ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 | efgsfo | ⊢ 𝑆 : dom  𝑆 –onto→ 𝑊 | 
						
							| 23 |  | fofn | ⊢ ( 𝑆 : dom  𝑆 –onto→ 𝑊  →  𝑆  Fn  dom  𝑆 ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ 𝑆  Fn  dom  𝑆 | 
						
							| 25 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ↔  ( 𝑟  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  𝑔 ) ) ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ↔  ( 𝑟  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  𝑔 ) ) | 
						
							| 27 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ↔  ( 𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑔 ) ) ) | 
						
							| 28 | 24 27 | ax-mp | ⊢ ( 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ↔  ( 𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑔 ) ) | 
						
							| 29 |  | eqtr3 | ⊢ ( ( ( 𝑆 ‘ 𝑟 )  =  𝑔  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑔 )  →  ( 𝑆 ‘ 𝑟 )  =  ( 𝑆 ‘ 𝑏 ) ) | 
						
							| 30 | 1 2 3 4 5 6 | efgred | ⊢ ( ( 𝑟  ∈  dom  𝑆  ∧  𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  ( 𝑆 ‘ 𝑏 ) )  →  ( 𝑟 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( 𝑟  ∈  dom  𝑆  ∧  𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  ( 𝑆 ‘ 𝑏 ) )  →  ( 𝑏 ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 32 | 31 | 3expa | ⊢ ( ( ( 𝑟  ∈  dom  𝑆  ∧  𝑏  ∈  dom  𝑆 )  ∧  ( 𝑆 ‘ 𝑟 )  =  ( 𝑆 ‘ 𝑏 ) )  →  ( 𝑏 ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 33 | 29 32 | sylan2 | ⊢ ( ( ( 𝑟  ∈  dom  𝑆  ∧  𝑏  ∈  dom  𝑆 )  ∧  ( ( 𝑆 ‘ 𝑟 )  =  𝑔  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑔 ) )  →  ( 𝑏 ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 34 | 33 | an4s | ⊢ ( ( ( 𝑟  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  𝑔 )  ∧  ( 𝑏  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑏 )  =  𝑔 ) )  →  ( 𝑏 ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 35 | 26 28 34 | syl2anb | ⊢ ( ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) )  →  ( 𝑏 ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 36 |  | eqeq2 | ⊢ ( ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ( ( 𝑏 ‘ 0 )  =  ( 𝑟 ‘ 0 )  ↔  ( 𝑏 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 37 | 35 36 | syl5ibcom | ⊢ ( ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) )  →  ( ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ( 𝑏 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 38 | 37 | reximdv | ⊢ ( ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) )  →  ( ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑏 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 39 |  | eqeq1 | ⊢ ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 )  ↔  ( 𝑏 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 40 | 39 | rexbidv | ⊢ ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 )  ↔  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑏 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( ( ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) )  ↔  ( ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑏 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) ) | 
						
							| 42 | 38 41 | syl5ibrcom | ⊢ ( ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  ∧  𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) )  →  ( ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  →  ( ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  →  ( ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) ) | 
						
							| 44 | 43 | impd | ⊢ ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } )  →  ( ( ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ∧  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) ) | 
						
							| 45 | 44 | rexlimiv | ⊢ ( ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ∧  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 46 | 45 | reximi | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ∧  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) )  →  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 47 | 21 46 | sylbir | ⊢ ( ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ∧  ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑔 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) )  →  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 48 | 16 20 47 | syl2anb | ⊢ ( ( 𝑓 𝐿 𝑔  ∧  𝑔 𝐿 ℎ )  →  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 49 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑓 𝐿 ℎ  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { ℎ } ) ( 𝑎 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 50 | 48 49 | sylibr | ⊢ ( ( 𝑓 𝐿 𝑔  ∧  𝑔 𝐿 ℎ )  →  𝑓 𝐿 ℎ ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑓 𝐿 𝑔  ∧  𝑔 𝐿 ℎ ) )  →  𝑓 𝐿 ℎ ) | 
						
							| 52 |  | eqid | ⊢ ( 𝑎 ‘ 0 )  =  ( 𝑎 ‘ 0 ) | 
						
							| 53 |  | fveq1 | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏 ‘ 0 )  =  ( 𝑎 ‘ 0 ) ) | 
						
							| 54 | 53 | rspceeqv | ⊢ ( ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  ∧  ( 𝑎 ‘ 0 )  =  ( 𝑎 ‘ 0 ) )  →  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 55 | 52 54 | mpan2 | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  →  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 56 | 55 | pm4.71i | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  ↔  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  ∧  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) ) | 
						
							| 57 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  ↔  ( 𝑎  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑎 )  =  𝑓 ) ) ) | 
						
							| 58 | 24 57 | ax-mp | ⊢ ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  ↔  ( 𝑎  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑎 )  =  𝑓 ) ) | 
						
							| 59 | 56 58 | bitr3i | ⊢ ( ( 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } )  ∧  ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) )  ↔  ( 𝑎  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑎 )  =  𝑓 ) ) | 
						
							| 60 | 59 | rexbii2 | ⊢ ( ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 )  ↔  ∃ 𝑎  ∈  dom  𝑆 ( 𝑆 ‘ 𝑎 )  =  𝑓 ) | 
						
							| 61 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑓 𝐿 𝑓  ↔  ∃ 𝑎  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ∃ 𝑏  ∈  ( ◡ 𝑆  “  { 𝑓 } ) ( 𝑎 ‘ 0 )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 62 |  | forn | ⊢ ( 𝑆 : dom  𝑆 –onto→ 𝑊  →  ran  𝑆  =  𝑊 ) | 
						
							| 63 | 22 62 | ax-mp | ⊢ ran  𝑆  =  𝑊 | 
						
							| 64 | 63 | eleq2i | ⊢ ( 𝑓  ∈  ran  𝑆  ↔  𝑓  ∈  𝑊 ) | 
						
							| 65 |  | fvelrnb | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑓  ∈  ran  𝑆  ↔  ∃ 𝑎  ∈  dom  𝑆 ( 𝑆 ‘ 𝑎 )  =  𝑓 ) ) | 
						
							| 66 | 24 65 | ax-mp | ⊢ ( 𝑓  ∈  ran  𝑆  ↔  ∃ 𝑎  ∈  dom  𝑆 ( 𝑆 ‘ 𝑎 )  =  𝑓 ) | 
						
							| 67 | 64 66 | bitr3i | ⊢ ( 𝑓  ∈  𝑊  ↔  ∃ 𝑎  ∈  dom  𝑆 ( 𝑆 ‘ 𝑎 )  =  𝑓 ) | 
						
							| 68 | 60 61 67 | 3bitr4ri | ⊢ ( 𝑓  ∈  𝑊  ↔  𝑓 𝐿 𝑓 ) | 
						
							| 69 | 68 | a1i | ⊢ ( ⊤  →  ( 𝑓  ∈  𝑊  ↔  𝑓 𝐿 𝑓 ) ) | 
						
							| 70 | 10 19 51 69 | iserd | ⊢ ( ⊤  →  𝐿  Er  𝑊 ) | 
						
							| 71 | 70 | mptru | ⊢ 𝐿  Er  𝑊 | 
						
							| 72 |  | simpl | ⊢ ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  →  𝑎  ∈  𝑊 ) | 
						
							| 73 |  | foelrn | ⊢ ( ( 𝑆 : dom  𝑆 –onto→ 𝑊  ∧  𝑎  ∈  𝑊 )  →  ∃ 𝑟  ∈  dom  𝑆 𝑎  =  ( 𝑆 ‘ 𝑟 ) ) | 
						
							| 74 | 22 72 73 | sylancr | ⊢ ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  →  ∃ 𝑟  ∈  dom  𝑆 𝑎  =  ( 𝑆 ‘ 𝑟 ) ) | 
						
							| 75 |  | simprl | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑟  ∈  dom  𝑆 ) | 
						
							| 76 |  | simprr | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) | 
						
							| 77 | 76 | eqcomd | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑆 ‘ 𝑟 )  =  𝑎 ) | 
						
							| 78 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑎 } )  ↔  ( 𝑟  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  𝑎 ) ) ) | 
						
							| 79 | 24 78 | ax-mp | ⊢ ( 𝑟  ∈  ( ◡ 𝑆  “  { 𝑎 } )  ↔  ( 𝑟  ∈  dom  𝑆  ∧  ( 𝑆 ‘ 𝑟 )  =  𝑎 ) ) | 
						
							| 80 | 75 77 79 | sylanbrc | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑟  ∈  ( ◡ 𝑆  “  { 𝑎 } ) ) | 
						
							| 81 |  | simplr | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) ) | 
						
							| 82 | 76 | fveq2d | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑇 ‘ 𝑎 )  =  ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) | 
						
							| 83 | 82 | rneqd | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ran  ( 𝑇 ‘ 𝑎 )  =  ran  ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) | 
						
							| 84 | 81 83 | eleqtrd | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑏  ∈  ran  ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) ) | 
						
							| 85 | 1 2 3 4 5 6 | efgsp1 | ⊢ ( ( 𝑟  ∈  dom  𝑆  ∧  𝑏  ∈  ran  ( 𝑇 ‘ ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  dom  𝑆 ) | 
						
							| 86 | 75 84 85 | syl2anc | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  dom  𝑆 ) | 
						
							| 87 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝑟  ∈  dom  𝑆  ↔  ( 𝑟  ∈  ( Word  𝑊  ∖  { ∅ } )  ∧  ( 𝑟 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑖  ∈  ( 1 ..^ ( ♯ ‘ 𝑟 ) ) ( 𝑟 ‘ 𝑖 )  ∈  ran  ( 𝑇 ‘ ( 𝑟 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 88 | 87 | simp1bi | ⊢ ( 𝑟  ∈  dom  𝑆  →  𝑟  ∈  ( Word  𝑊  ∖  { ∅ } ) ) | 
						
							| 89 | 88 | ad2antrl | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑟  ∈  ( Word  𝑊  ∖  { ∅ } ) ) | 
						
							| 90 | 89 | eldifad | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑟  ∈  Word  𝑊 ) | 
						
							| 91 | 1 2 3 4 | efgtf | ⊢ ( 𝑎  ∈  𝑊  →  ( ( 𝑇 ‘ 𝑎 )  =  ( 𝑓  ∈  ( 0 ... ( ♯ ‘ 𝑎 ) ) ,  𝑔  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑎  splice  〈 𝑓 ,  𝑓 ,  〈“ 𝑔 ( 𝑀 ‘ 𝑔 ) ”〉 〉 ) )  ∧  ( 𝑇 ‘ 𝑎 ) : ( ( 0 ... ( ♯ ‘ 𝑎 ) )  ×  ( 𝐼  ×  2o ) ) ⟶ 𝑊 ) ) | 
						
							| 92 | 91 | simprd | ⊢ ( 𝑎  ∈  𝑊  →  ( 𝑇 ‘ 𝑎 ) : ( ( 0 ... ( ♯ ‘ 𝑎 ) )  ×  ( 𝐼  ×  2o ) ) ⟶ 𝑊 ) | 
						
							| 93 | 92 | frnd | ⊢ ( 𝑎  ∈  𝑊  →  ran  ( 𝑇 ‘ 𝑎 )  ⊆  𝑊 ) | 
						
							| 94 | 93 | sselda | ⊢ ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  →  𝑏  ∈  𝑊 ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  𝑏  ∈  𝑊 ) | 
						
							| 96 | 1 2 3 4 5 6 | efgsval2 | ⊢ ( ( 𝑟  ∈  Word  𝑊  ∧  𝑏  ∈  𝑊  ∧  ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  dom  𝑆 )  →  ( 𝑆 ‘ ( 𝑟  ++  〈“ 𝑏 ”〉 ) )  =  𝑏 ) | 
						
							| 97 | 90 95 86 96 | syl3anc | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑆 ‘ ( 𝑟  ++  〈“ 𝑏 ”〉 ) )  =  𝑏 ) | 
						
							| 98 |  | fniniseg | ⊢ ( 𝑆  Fn  dom  𝑆  →  ( ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  ( ◡ 𝑆  “  { 𝑏 } )  ↔  ( ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  dom  𝑆  ∧  ( 𝑆 ‘ ( 𝑟  ++  〈“ 𝑏 ”〉 ) )  =  𝑏 ) ) ) | 
						
							| 99 | 24 98 | ax-mp | ⊢ ( ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  ( ◡ 𝑆  “  { 𝑏 } )  ↔  ( ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  dom  𝑆  ∧  ( 𝑆 ‘ ( 𝑟  ++  〈“ 𝑏 ”〉 ) )  =  𝑏 ) ) | 
						
							| 100 | 86 97 99 | sylanbrc | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  ( ◡ 𝑆  “  { 𝑏 } ) ) | 
						
							| 101 | 95 | s1cld | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  〈“ 𝑏 ”〉  ∈  Word  𝑊 ) | 
						
							| 102 |  | eldifsn | ⊢ ( 𝑟  ∈  ( Word  𝑊  ∖  { ∅ } )  ↔  ( 𝑟  ∈  Word  𝑊  ∧  𝑟  ≠  ∅ ) ) | 
						
							| 103 |  | lennncl | ⊢ ( ( 𝑟  ∈  Word  𝑊  ∧  𝑟  ≠  ∅ )  →  ( ♯ ‘ 𝑟 )  ∈  ℕ ) | 
						
							| 104 | 102 103 | sylbi | ⊢ ( 𝑟  ∈  ( Word  𝑊  ∖  { ∅ } )  →  ( ♯ ‘ 𝑟 )  ∈  ℕ ) | 
						
							| 105 | 89 104 | syl | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( ♯ ‘ 𝑟 )  ∈  ℕ ) | 
						
							| 106 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑟 ) )  ↔  ( ♯ ‘ 𝑟 )  ∈  ℕ ) | 
						
							| 107 | 105 106 | sylibr | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑟 ) ) ) | 
						
							| 108 |  | ccatval1 | ⊢ ( ( 𝑟  ∈  Word  𝑊  ∧  〈“ 𝑏 ”〉  ∈  Word  𝑊  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑟 ) ) )  →  ( ( 𝑟  ++  〈“ 𝑏 ”〉 ) ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 109 | 90 101 107 108 | syl3anc | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( ( 𝑟  ++  〈“ 𝑏 ”〉 ) ‘ 0 )  =  ( 𝑟 ‘ 0 ) ) | 
						
							| 110 | 109 | eqcomd | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ( 𝑟 ‘ 0 )  =  ( ( 𝑟  ++  〈“ 𝑏 ”〉 ) ‘ 0 ) ) | 
						
							| 111 |  | fveq1 | ⊢ ( 𝑠  =  ( 𝑟  ++  〈“ 𝑏 ”〉 )  →  ( 𝑠 ‘ 0 )  =  ( ( 𝑟  ++  〈“ 𝑏 ”〉 ) ‘ 0 ) ) | 
						
							| 112 | 111 | rspceeqv | ⊢ ( ( ( 𝑟  ++  〈“ 𝑏 ”〉 )  ∈  ( ◡ 𝑆  “  { 𝑏 } )  ∧  ( 𝑟 ‘ 0 )  =  ( ( 𝑟  ++  〈“ 𝑏 ”〉 ) ‘ 0 ) )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { 𝑏 } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 113 | 100 110 112 | syl2anc | ⊢ ( ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  ∧  ( 𝑟  ∈  dom  𝑆  ∧  𝑎  =  ( 𝑆 ‘ 𝑟 ) ) )  →  ∃ 𝑠  ∈  ( ◡ 𝑆  “  { 𝑏 } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 114 | 74 80 113 | reximssdv | ⊢ ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  →  ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑎 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { 𝑏 } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 115 | 1 2 3 4 5 6 7 | efgrelexlema | ⊢ ( 𝑎 𝐿 𝑏  ↔  ∃ 𝑟  ∈  ( ◡ 𝑆  “  { 𝑎 } ) ∃ 𝑠  ∈  ( ◡ 𝑆  “  { 𝑏 } ) ( 𝑟 ‘ 0 )  =  ( 𝑠 ‘ 0 ) ) | 
						
							| 116 | 114 115 | sylibr | ⊢ ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  →  𝑎 𝐿 𝑏 ) | 
						
							| 117 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 118 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 119 | 117 118 | elec | ⊢ ( 𝑏  ∈  [ 𝑎 ] 𝐿  ↔  𝑎 𝐿 𝑏 ) | 
						
							| 120 | 116 119 | sylibr | ⊢ ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 ) )  →  𝑏  ∈  [ 𝑎 ] 𝐿 ) | 
						
							| 121 | 120 | ex | ⊢ ( 𝑎  ∈  𝑊  →  ( 𝑏  ∈  ran  ( 𝑇 ‘ 𝑎 )  →  𝑏  ∈  [ 𝑎 ] 𝐿 ) ) | 
						
							| 122 | 121 | ssrdv | ⊢ ( 𝑎  ∈  𝑊  →  ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝐿 ) | 
						
							| 123 | 122 | rgen | ⊢ ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝐿 | 
						
							| 124 | 1 | fvexi | ⊢ 𝑊  ∈  V | 
						
							| 125 |  | erex | ⊢ ( 𝐿  Er  𝑊  →  ( 𝑊  ∈  V  →  𝐿  ∈  V ) ) | 
						
							| 126 | 71 124 125 | mp2 | ⊢ 𝐿  ∈  V | 
						
							| 127 |  | ereq1 | ⊢ ( 𝑟  =  𝐿  →  ( 𝑟  Er  𝑊  ↔  𝐿  Er  𝑊 ) ) | 
						
							| 128 |  | eceq2 | ⊢ ( 𝑟  =  𝐿  →  [ 𝑎 ] 𝑟  =  [ 𝑎 ] 𝐿 ) | 
						
							| 129 | 128 | sseq2d | ⊢ ( 𝑟  =  𝐿  →  ( ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟  ↔  ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝐿 ) ) | 
						
							| 130 | 129 | ralbidv | ⊢ ( 𝑟  =  𝐿  →  ( ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟  ↔  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝐿 ) ) | 
						
							| 131 | 127 130 | anbi12d | ⊢ ( 𝑟  =  𝐿  →  ( ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 )  ↔  ( 𝐿  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝐿 ) ) ) | 
						
							| 132 | 126 131 | elab | ⊢ ( 𝐿  ∈  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) }  ↔  ( 𝐿  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝐿 ) ) | 
						
							| 133 | 71 123 132 | mpbir2an | ⊢ 𝐿  ∈  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) } | 
						
							| 134 |  | intss1 | ⊢ ( 𝐿  ∈  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) }  →  ∩  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) }  ⊆  𝐿 ) | 
						
							| 135 | 133 134 | ax-mp | ⊢ ∩  { 𝑟  ∣  ( 𝑟  Er  𝑊  ∧  ∀ 𝑎  ∈  𝑊 ran  ( 𝑇 ‘ 𝑎 )  ⊆  [ 𝑎 ] 𝑟 ) }  ⊆  𝐿 | 
						
							| 136 | 8 135 | eqsstri | ⊢  ∼   ⊆  𝐿 |