Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
eldifn |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → ¬ ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
8 |
7 5
|
eleq2s |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 → ¬ ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
9 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑎 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴 ‘ 𝑎 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑎 − 1 ) ) ) ) ) |
10 |
9
|
simp1bi |
⊢ ( 𝐴 ∈ dom 𝑆 → 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
11 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐴 ∈ Word 𝑊 ∧ 𝐴 ≠ ∅ ) ) |
12 |
|
lennncl |
⊢ ( ( 𝐴 ∈ Word 𝑊 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
13 |
11 12
|
sylbi |
⊢ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
14 |
10 13
|
syl |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
15 |
|
elnn1uz2 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) = 1 ∨ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) = 1 ∨ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
17 |
16
|
ord |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ¬ ( ♯ ‘ 𝐴 ) = 1 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
18 |
10
|
eldifad |
⊢ ( 𝐴 ∈ dom 𝑆 → 𝐴 ∈ Word 𝑊 ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ Word 𝑊 ) |
20 |
|
wrdf |
⊢ ( 𝐴 ∈ Word 𝑊 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 ) |
22 |
|
1z |
⊢ 1 ∈ ℤ |
23 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) |
24 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
25 |
24
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
26 |
23 25
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
27 |
|
eluzp1m1 |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
28 |
22 26 27
|
sylancr |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
29 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
30 |
28 29
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
31 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
32 |
30 31
|
sylibr |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
33 |
|
fzoend |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
34 |
|
elfzofz |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
35 |
32 33 34
|
3syl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
36 |
|
eluzelz |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
37 |
36
|
adantl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
38 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
40 |
35 39
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
41 |
21 40
|
ffvelrnd |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ∈ 𝑊 ) |
42 |
|
uz2m1nn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
43 |
1 2 3 4 5 6
|
efgsdmi |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
44 |
42 43
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
45 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
46 |
45
|
rneqd |
⊢ ( 𝑎 = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) → ran ( 𝑇 ‘ 𝑎 ) = ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
47 |
46
|
eliuni |
⊢ ( ( ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ) |
48 |
41 44 47
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑥 ) ) |
50 |
49
|
rneqd |
⊢ ( 𝑎 = 𝑥 → ran ( 𝑇 ‘ 𝑎 ) = ran ( 𝑇 ‘ 𝑥 ) ) |
51 |
50
|
cbviunv |
⊢ ∪ 𝑎 ∈ 𝑊 ran ( 𝑇 ‘ 𝑎 ) = ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) |
52 |
48 51
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
53 |
52
|
ex |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ) |
54 |
17 53
|
syld |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ¬ ( ♯ ‘ 𝐴 ) = 1 → ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) ) |
55 |
54
|
con1d |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ¬ ( 𝑆 ‘ 𝐴 ) ∈ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) → ( ♯ ‘ 𝐴 ) = 1 ) ) |
56 |
8 55
|
syl5 |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 → ( ♯ ‘ 𝐴 ) = 1 ) ) |
57 |
9
|
simp2bi |
⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∈ 𝐷 ) |
58 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) − 1 ) = ( 1 − 1 ) ) |
59 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
60 |
58 59
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) − 1 ) = 0 ) |
61 |
60
|
fveq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ 0 ) ) |
62 |
61
|
eleq1d |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ∈ 𝐷 ↔ ( 𝐴 ‘ 0 ) ∈ 𝐷 ) ) |
63 |
57 62
|
syl5ibrcom |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ∈ 𝐷 ) ) |
64 |
1 2 3 4 5 6
|
efgsval |
⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
65 |
64
|
eleq1d |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 ↔ ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ∈ 𝐷 ) ) |
66 |
63 65
|
sylibrd |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 ) ) |
67 |
56 66
|
impbid |
⊢ ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐴 ) = 1 ) ) |