Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
1 2 3 4 5 6
|
efgsval |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐹 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
10 |
|
fvoveq1 |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝐹 ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) − 1 ) ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) − 1 ) ) ) ) |
12 |
11
|
rneqd |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) − 1 ) ) ) ) |
13 |
9 12
|
eleq12d |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) − 1 ) ) ) ) ) |
14 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐹 ∈ dom 𝑆 ↔ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
15 |
14
|
simp3bi |
⊢ ( 𝐹 ∈ dom 𝑆 → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) |
18 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
19 |
17 18
|
eleqtrdi |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
20 |
|
eluzfz1 |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → 1 ∈ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
22 |
14
|
simp1bi |
⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
24 |
23
|
eldifad |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → 𝐹 ∈ Word 𝑊 ) |
25 |
|
lencl |
⊢ ( 𝐹 ∈ Word 𝑊 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
26 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
27 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
28 |
24 25 26 27
|
4syl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
29 |
21 28
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
30 |
|
fzoend |
⊢ ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
32 |
13 16 31
|
rspcdva |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) − 1 ) ) ) ) |
33 |
8 32
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐹 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) − 1 ) ) ) ) |