| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑚  =  𝑡  →  𝑚  =  𝑡 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑚  =  𝑡  →  ( ♯ ‘ 𝑚 )  =  ( ♯ ‘ 𝑡 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑚  =  𝑡  →  ( ( ♯ ‘ 𝑚 )  −  1 )  =  ( ( ♯ ‘ 𝑡 )  −  1 ) ) | 
						
							| 10 | 7 9 | fveq12d | ⊢ ( 𝑚  =  𝑡  →  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) )  =  ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 )  −  1 ) ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑚  =  𝑡  →  ( ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) )  ∈  𝑊  ↔  ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 )  −  1 ) )  ∈  𝑊 ) ) | 
						
							| 12 | 11 | ralrab2 | ⊢ ( ∀ 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) )  ∈  𝑊  ↔  ∀ 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } ) ( ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) )  →  ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 )  −  1 ) )  ∈  𝑊 ) ) | 
						
							| 13 |  | eldifi | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  →  𝑡  ∈  Word  𝑊 ) | 
						
							| 14 |  | wrdf | ⊢ ( 𝑡  ∈  Word  𝑊  →  𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑊 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  →  𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑊 ) | 
						
							| 16 |  | eldifsn | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ↔  ( 𝑡  ∈  Word  𝑊  ∧  𝑡  ≠  ∅ ) ) | 
						
							| 17 |  | lennncl | ⊢ ( ( 𝑡  ∈  Word  𝑊  ∧  𝑡  ≠  ∅ )  →  ( ♯ ‘ 𝑡 )  ∈  ℕ ) | 
						
							| 18 | 16 17 | sylbi | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  →  ( ♯ ‘ 𝑡 )  ∈  ℕ ) | 
						
							| 19 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝑡 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑡 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  →  ( ( ♯ ‘ 𝑡 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) | 
						
							| 21 | 15 20 | ffvelcdmd | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  →  ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 )  −  1 ) )  ∈  𝑊 ) | 
						
							| 22 | 21 | a1d | ⊢ ( 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  →  ( ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) )  →  ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 )  −  1 ) )  ∈  𝑊 ) ) | 
						
							| 23 | 12 22 | mprgbir | ⊢ ∀ 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) )  ∈  𝑊 | 
						
							| 24 | 6 | fmpt | ⊢ ( ∀ 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) )  ∈  𝑊  ↔  𝑆 : { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } ⟶ 𝑊 ) | 
						
							| 25 | 23 24 | mpbi | ⊢ 𝑆 : { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } ⟶ 𝑊 |