Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
7 |
|
id |
⊢ ( 𝑚 = 𝑡 → 𝑚 = 𝑡 ) |
8 |
|
fveq2 |
⊢ ( 𝑚 = 𝑡 → ( ♯ ‘ 𝑚 ) = ( ♯ ‘ 𝑡 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑚 = 𝑡 → ( ( ♯ ‘ 𝑚 ) − 1 ) = ( ( ♯ ‘ 𝑡 ) − 1 ) ) |
10 |
7 9
|
fveq12d |
⊢ ( 𝑚 = 𝑡 → ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) = ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑚 = 𝑡 → ( ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 ↔ ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) ) |
12 |
11
|
ralrab2 |
⊢ ( ∀ 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 ↔ ∀ 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ( ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) ) |
13 |
|
eldifi |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝑡 ∈ Word 𝑊 ) |
14 |
|
wrdf |
⊢ ( 𝑡 ∈ Word 𝑊 → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑊 ) |
15 |
13 14
|
syl |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑊 ) |
16 |
|
eldifsn |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝑡 ∈ Word 𝑊 ∧ 𝑡 ≠ ∅ ) ) |
17 |
|
lennncl |
⊢ ( ( 𝑡 ∈ Word 𝑊 ∧ 𝑡 ≠ ∅ ) → ( ♯ ‘ 𝑡 ) ∈ ℕ ) |
18 |
16 17
|
sylbi |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝑡 ) ∈ ℕ ) |
19 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑡 ) ∈ ℕ → ( ( ♯ ‘ 𝑡 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑡 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) |
21 |
15 20
|
ffvelrnd |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) |
22 |
21
|
a1d |
⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) ) |
23 |
12 22
|
mprgbir |
⊢ ∀ 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 |
24 |
6
|
fmpt |
⊢ ( ∀ 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
25 |
23 24
|
mpbi |
⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |