| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 2 |
|
efgval.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 3 |
|
efgval2.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
| 4 |
|
efgval2.t |
⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
| 5 |
|
efgred.d |
⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
|
efgred.s |
⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) |
| 7 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( 𝐹 ∈ dom 𝑆 ↔ ( 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 8 |
7
|
simp1bi |
⊢ ( 𝐹 ∈ dom 𝑆 → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 10 |
9
|
eldifad |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word 𝑊 ) |
| 11 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 13 |
11 12
|
sselid |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 14 |
|
pfxres |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 15 |
10 13 14
|
syl2anc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 16 |
|
pfxcl |
⊢ ( 𝐹 ∈ Word 𝑊 → ( 𝐹 prefix 𝑁 ) ∈ Word 𝑊 ) |
| 17 |
10 16
|
syl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) ∈ Word 𝑊 ) |
| 18 |
15 17
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑊 ) |
| 19 |
|
pfxlen |
⊢ ( ( 𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 20 |
10 13 19
|
syl2anc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 21 |
|
elfznn |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ℕ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ℕ ) |
| 23 |
20 22
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) ∈ ℕ ) |
| 24 |
|
wrdfin |
⊢ ( ( 𝐹 prefix 𝑁 ) ∈ Word 𝑊 → ( 𝐹 prefix 𝑁 ) ∈ Fin ) |
| 25 |
|
hashnncl |
⊢ ( ( 𝐹 prefix 𝑁 ) ∈ Fin → ( ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) ∈ ℕ ↔ ( 𝐹 prefix 𝑁 ) ≠ ∅ ) ) |
| 26 |
17 24 25
|
3syl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) ∈ ℕ ↔ ( 𝐹 prefix 𝑁 ) ≠ ∅ ) ) |
| 27 |
23 26
|
mpbid |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) ≠ ∅ ) |
| 28 |
15 27
|
eqnetrrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ≠ ∅ ) |
| 29 |
|
eldifsn |
⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑊 ∧ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ≠ ∅ ) ) |
| 30 |
18 28 29
|
sylanbrc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 31 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) |
| 32 |
22 31
|
sylibr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 33 |
32
|
fvresd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 34 |
7
|
simp2bi |
⊢ ( 𝐹 ∈ dom 𝑆 → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 0 ) ∈ 𝐷 ) |
| 36 |
33 35
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 0 ) ∈ 𝐷 ) |
| 37 |
|
elfzuz3 |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 39 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 41 |
7
|
simp3bi |
⊢ ( 𝐹 ∈ dom 𝑆 → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 43 |
|
ssralv |
⊢ ( ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 44 |
40 42 43
|
sylc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 45 |
|
fzo0ss1 |
⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) |
| 46 |
45
|
sseli |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
| 47 |
46
|
fvresd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 48 |
|
elfzoel2 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 49 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 51 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 52 |
48 51
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 53 |
48
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ℂ ) |
| 54 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 55 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 56 |
53 54 55
|
sylancl |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 58 |
52 57
|
eleqtrrd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 59 |
|
peano2uzr |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 60 |
50 58 59
|
syl2anc |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 61 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 62 |
60 61
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 63 |
|
elfzo1elm1fzo0 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) |
| 64 |
62 63
|
sseldd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑖 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 65 |
64
|
fvresd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) = ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) = ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 67 |
66
|
rneqd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) = ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 68 |
47 67
|
eleq12d |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑁 ) → ( ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ↔ ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 69 |
68
|
ralbiia |
⊢ ( ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( 𝐹 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐹 ‘ ( 𝑖 − 1 ) ) ) ) |
| 70 |
44 69
|
sylibr |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 71 |
15
|
fveq2d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |
| 72 |
71 20
|
eqtr3d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = 𝑁 ) |
| 73 |
72
|
oveq2d |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) = ( 1 ..^ 𝑁 ) ) |
| 74 |
70 73
|
raleqtrrdv |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ) |
| 75 |
1 2 3 4 5 6
|
efgsdm |
⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ dom 𝑆 ↔ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 76 |
30 36 74 75
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ dom 𝑆 ) |