| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 |  | efgred.d | ⊢ 𝐷  =  ( 𝑊  ∖  ∪  𝑥  ∈  𝑊 ran  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 |  | efgred.s | ⊢ 𝑆  =  ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑓  =  𝐹  →  𝑓  =  𝐹 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ 𝑓 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ♯ ‘ 𝑓 )  −  1 )  =  ( ( ♯ ‘ 𝐹 )  −  1 ) ) | 
						
							| 10 | 7 9 | fveq12d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) )  =  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑚  =  𝑓  →  𝑚  =  𝑓 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑚  =  𝑓  →  ( ♯ ‘ 𝑚 )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑚  =  𝑓  →  ( ( ♯ ‘ 𝑚 )  −  1 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) ) | 
						
							| 14 | 11 13 | fveq12d | ⊢ ( 𝑚  =  𝑓  →  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) )  =  ( 𝑓 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ) | 
						
							| 15 | 14 | cbvmptv | ⊢ ( 𝑚  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 )  −  1 ) ) )  =  ( 𝑓  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑓 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ) | 
						
							| 16 | 6 15 | eqtri | ⊢ 𝑆  =  ( 𝑓  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  ↦  ( 𝑓 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ) | 
						
							| 17 |  | fvex | ⊢ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∈  V | 
						
							| 18 | 10 16 17 | fvmpt | ⊢ ( 𝐹  ∈  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) }  →  ( 𝑆 ‘ 𝐹 )  =  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 | efgsf | ⊢ 𝑆 : { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } ⟶ 𝑊 | 
						
							| 20 | 19 | fdmi | ⊢ dom  𝑆  =  { 𝑡  ∈  ( Word  𝑊  ∖  { ∅ } )  ∣  ( ( 𝑡 ‘ 0 )  ∈  𝐷  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 )  ∈  ran  ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘  −  1 ) ) ) ) } | 
						
							| 21 | 18 20 | eleq2s | ⊢ ( 𝐹  ∈  dom  𝑆  →  ( 𝑆 ‘ 𝐹 )  =  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) |