Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
2 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℕ0 ) |
5 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
6 |
|
0z |
⊢ 0 ∈ ℤ |
7 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
8 |
7
|
eftval |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) |
9 |
3 8
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) |
10 |
|
eft0val |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) |
11 |
9 10
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 0 ) = 1 ) |
12 |
6 11
|
seq1i |
⊢ ( 𝐴 ∈ ℂ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 0 ) = 1 ) |
13 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
14 |
7
|
eftval |
⊢ ( 1 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) ) |
15 |
13 14
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) |
16 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
17 |
16
|
oveq2i |
⊢ ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = ( ( 𝐴 ↑ 1 ) / 1 ) |
18 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
19 |
18
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / 1 ) = ( 𝐴 / 1 ) ) |
20 |
|
div1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) |
21 |
19 20
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / 1 ) = 𝐴 ) |
22 |
17 21
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝐴 ) |
23 |
15 22
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 1 ) = 𝐴 ) |
24 |
2 4 5 12 23
|
seqp1d |
⊢ ( 𝐴 ∈ ℂ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) = ( 1 + 𝐴 ) ) |
25 |
1 24
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) = ( 1 + 𝐴 ) ) |
26 |
|
id |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) |
27 |
13
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℕ0 ) |
28 |
7 26 27
|
effsumlt |
⊢ ( 𝐴 ∈ ℝ+ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 1 ) < ( exp ‘ 𝐴 ) ) |
29 |
25 28
|
eqbrtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + 𝐴 ) < ( exp ‘ 𝐴 ) ) |