| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 2 |  | efgval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | efgval2.m | ⊢ 𝑀  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  〈 𝑦 ,  ( 1o  ∖  𝑧 ) 〉 ) | 
						
							| 4 |  | efgval2.t | ⊢ 𝑇  =  ( 𝑣  ∈  𝑊  ↦  ( 𝑛  ∈  ( 0 ... ( ♯ ‘ 𝑣 ) ) ,  𝑤  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑣  splice  〈 𝑛 ,  𝑛 ,  〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | 
						
							| 5 | 1 2 3 4 | efgtf | ⊢ ( 𝑋  ∈  𝑊  →  ( ( 𝑇 ‘ 𝑋 )  =  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) )  ∧  ( 𝑇 ‘ 𝑋 ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) )  ×  ( 𝐼  ×  2o ) ) ⟶ 𝑊 ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝑇 ‘ 𝑋 )  =  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) | 
						
							| 7 | 6 | rneqd | ⊢ ( 𝑋  ∈  𝑊  →  ran  ( 𝑇 ‘ 𝑋 )  =  ran  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝐴  ∈  ran  ( 𝑇 ‘ 𝑋 )  ↔  𝐴  ∈  ran  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) )  =  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) | 
						
							| 10 |  | ovex | ⊢ ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 )  ∈  V | 
						
							| 11 | 9 10 | elrnmpo | ⊢ ( 𝐴  ∈  ran  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ,  𝑏  ∈  ( 𝐼  ×  2o )  ↦  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) )  ↔  ∃ 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ∃ 𝑏  ∈  ( 𝐼  ×  2o ) 𝐴  =  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) | 
						
							| 12 | 8 11 | bitrdi | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝐴  ∈  ran  ( 𝑇 ‘ 𝑋 )  ↔  ∃ 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ∃ 𝑏  ∈  ( 𝐼  ×  2o ) 𝐴  =  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) | 
						
							| 13 |  | fviss | ⊢ (  I  ‘ Word  ( 𝐼  ×  2o ) )  ⊆  Word  ( 𝐼  ×  2o ) | 
						
							| 14 | 1 13 | eqsstri | ⊢ 𝑊  ⊆  Word  ( 𝐼  ×  2o ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑋  ∈  𝑊 ) | 
						
							| 16 | 14 15 | sselid | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑋  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 17 |  | elfzuz | ⊢ ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  →  𝑎  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑎  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 19 |  | eluzfz2b | ⊢ ( 𝑎  ∈  ( ℤ≥ ‘ 0 )  ↔  𝑎  ∈  ( 0 ... 𝑎 ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑎  ∈  ( 0 ... 𝑎 ) ) | 
						
							| 21 |  | simprl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 22 |  | simprr | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑏  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 23 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼  ×  2o ) ⟶ ( 𝐼  ×  2o ) | 
						
							| 24 | 23 | ffvelcdmi | ⊢ ( 𝑏  ∈  ( 𝐼  ×  2o )  →  ( 𝑀 ‘ 𝑏 )  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( 𝑀 ‘ 𝑏 )  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 26 | 22 25 | s2cld | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 27 | 16 20 21 26 | spllen | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( ♯ ‘ ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) )  =  ( ( ♯ ‘ 𝑋 )  +  ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 )  −  ( 𝑎  −  𝑎 ) ) ) ) | 
						
							| 28 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 )  =  2 | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 )  =  2 ) | 
						
							| 30 |  | eluzelcn | ⊢ ( 𝑎  ∈  ( ℤ≥ ‘ 0 )  →  𝑎  ∈  ℂ ) | 
						
							| 31 | 18 30 | syl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  𝑎  ∈  ℂ ) | 
						
							| 32 | 31 | subidd | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( 𝑎  −  𝑎 )  =  0 ) | 
						
							| 33 | 29 32 | oveq12d | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 )  −  ( 𝑎  −  𝑎 ) )  =  ( 2  −  0 ) ) | 
						
							| 34 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 35 | 34 | subid1i | ⊢ ( 2  −  0 )  =  2 | 
						
							| 36 | 33 35 | eqtrdi | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 )  −  ( 𝑎  −  𝑎 ) )  =  2 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( ( ♯ ‘ 𝑋 )  +  ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 )  −  ( 𝑎  −  𝑎 ) ) )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) | 
						
							| 38 | 27 37 | eqtrd | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( ♯ ‘ ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) | 
						
							| 39 |  | fveqeq2 | ⊢ ( 𝐴  =  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 )  →  ( ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝑋 )  +  2 )  ↔  ( ♯ ‘ ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) ) | 
						
							| 40 | 38 39 | syl5ibrcom | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ( 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) )  ∧  𝑏  ∈  ( 𝐼  ×  2o ) ) )  →  ( 𝐴  =  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 )  →  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) ) | 
						
							| 41 | 40 | rexlimdvva | ⊢ ( 𝑋  ∈  𝑊  →  ( ∃ 𝑎  ∈  ( 0 ... ( ♯ ‘ 𝑋 ) ) ∃ 𝑏  ∈  ( 𝐼  ×  2o ) 𝐴  =  ( 𝑋  splice  〈 𝑎 ,  𝑎 ,  〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 )  →  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) ) | 
						
							| 42 | 12 41 | sylbid | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝐴  ∈  ran  ( 𝑇 ‘ 𝑋 )  →  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( 𝑋  ∈  𝑊  ∧  𝐴  ∈  ran  ( 𝑇 ‘ 𝑋 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝑋 )  +  2 ) ) |