Metamath Proof Explorer


Theorem efgval

Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
Assertion efgval = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) }

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 vex 𝑖 ∈ V
4 2on 2o ∈ On
5 4 elexi 2o ∈ V
6 3 5 xpex ( 𝑖 × 2o ) ∈ V
7 wrdexg ( ( 𝑖 × 2o ) ∈ V → Word ( 𝑖 × 2o ) ∈ V )
8 fvi ( Word ( 𝑖 × 2o ) ∈ V → ( I ‘ Word ( 𝑖 × 2o ) ) = Word ( 𝑖 × 2o ) )
9 6 7 8 mp2b ( I ‘ Word ( 𝑖 × 2o ) ) = Word ( 𝑖 × 2o )
10 xpeq1 ( 𝑖 = 𝐼 → ( 𝑖 × 2o ) = ( 𝐼 × 2o ) )
11 wrdeq ( ( 𝑖 × 2o ) = ( 𝐼 × 2o ) → Word ( 𝑖 × 2o ) = Word ( 𝐼 × 2o ) )
12 10 11 syl ( 𝑖 = 𝐼 → Word ( 𝑖 × 2o ) = Word ( 𝐼 × 2o ) )
13 12 fveq2d ( 𝑖 = 𝐼 → ( I ‘ Word ( 𝑖 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) )
14 9 13 eqtr3id ( 𝑖 = 𝐼 → Word ( 𝑖 × 2o ) = ( I ‘ Word ( 𝐼 × 2o ) ) )
15 14 1 eqtr4di ( 𝑖 = 𝐼 → Word ( 𝑖 × 2o ) = 𝑊 )
16 ereq2 ( Word ( 𝑖 × 2o ) = 𝑊 → ( 𝑟 Er Word ( 𝑖 × 2o ) ↔ 𝑟 Er 𝑊 ) )
17 15 16 syl ( 𝑖 = 𝐼 → ( 𝑟 Er Word ( 𝑖 × 2o ) ↔ 𝑟 Er 𝑊 ) )
18 raleq ( 𝑖 = 𝐼 → ( ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) )
19 18 ralbidv ( 𝑖 = 𝐼 → ( ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) )
20 15 19 raleqbidv ( 𝑖 = 𝐼 → ( ∀ 𝑥 ∈ Word ( 𝑖 × 2o ) ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) )
21 17 20 anbi12d ( 𝑖 = 𝐼 → ( ( 𝑟 Er Word ( 𝑖 × 2o ) ∧ ∀ 𝑥 ∈ Word ( 𝑖 × 2o ) ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) ↔ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) ) )
22 21 abbidv ( 𝑖 = 𝐼 → { 𝑟 ∣ ( 𝑟 Er Word ( 𝑖 × 2o ) ∧ ∀ 𝑥 ∈ Word ( 𝑖 × 2o ) ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } )
23 22 inteqd ( 𝑖 = 𝐼 { 𝑟 ∣ ( 𝑟 Er Word ( 𝑖 × 2o ) ∧ ∀ 𝑥 ∈ Word ( 𝑖 × 2o ) ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } )
24 df-efg ~FG = ( 𝑖 ∈ V ↦ { 𝑟 ∣ ( 𝑟 Er Word ( 𝑖 × 2o ) ∧ ∀ 𝑥 ∈ Word ( 𝑖 × 2o ) ∀ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝑖𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } )
25 1 efglem 𝑟 ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) )
26 intexab ( ∃ 𝑟 ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) ↔ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ∈ V )
27 25 26 mpbi { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ∈ V
28 23 24 27 fvmpt ( 𝐼 ∈ V → ( ~FG𝐼 ) = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } )
29 fvprc ( ¬ 𝐼 ∈ V → ( ~FG𝐼 ) = ∅ )
30 abn0 ( { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ≠ ∅ ↔ ∃ 𝑟 ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) )
31 25 30 mpbir { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ≠ ∅
32 intssuni ( { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ≠ ∅ → { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ⊆ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } )
33 31 32 ax-mp { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ⊆ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) }
34 erssxp ( 𝑟 Er 𝑊𝑟 ⊆ ( 𝑊 × 𝑊 ) )
35 1 efgrcl ( 𝑥𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
36 35 simpld ( 𝑥𝑊𝐼 ∈ V )
37 36 con3i ( ¬ 𝐼 ∈ V → ¬ 𝑥𝑊 )
38 37 eq0rdv ( ¬ 𝐼 ∈ V → 𝑊 = ∅ )
39 38 xpeq2d ( ¬ 𝐼 ∈ V → ( 𝑊 × 𝑊 ) = ( 𝑊 × ∅ ) )
40 xp0 ( 𝑊 × ∅ ) = ∅
41 39 40 eqtrdi ( ¬ 𝐼 ∈ V → ( 𝑊 × 𝑊 ) = ∅ )
42 ss0b ( ( 𝑊 × 𝑊 ) ⊆ ∅ ↔ ( 𝑊 × 𝑊 ) = ∅ )
43 41 42 sylibr ( ¬ 𝐼 ∈ V → ( 𝑊 × 𝑊 ) ⊆ ∅ )
44 34 43 sylan9ssr ( ( ¬ 𝐼 ∈ V ∧ 𝑟 Er 𝑊 ) → 𝑟 ⊆ ∅ )
45 44 ex ( ¬ 𝐼 ∈ V → ( 𝑟 Er 𝑊𝑟 ⊆ ∅ ) )
46 45 adantrd ( ¬ 𝐼 ∈ V → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) → 𝑟 ⊆ ∅ ) )
47 46 alrimiv ( ¬ 𝐼 ∈ V → ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) → 𝑟 ⊆ ∅ ) )
48 sseq1 ( 𝑤 = 𝑟 → ( 𝑤 ⊆ ∅ ↔ 𝑟 ⊆ ∅ ) )
49 48 ralab2 ( ∀ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } 𝑤 ⊆ ∅ ↔ ∀ 𝑟 ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) → 𝑟 ⊆ ∅ ) )
50 47 49 sylibr ( ¬ 𝐼 ∈ V → ∀ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } 𝑤 ⊆ ∅ )
51 unissb ( { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ⊆ ∅ ↔ ∀ 𝑤 ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } 𝑤 ⊆ ∅ )
52 50 51 sylibr ( ¬ 𝐼 ∈ V → { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ⊆ ∅ )
53 33 52 sstrid ( ¬ 𝐼 ∈ V → { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ⊆ ∅ )
54 ss0 ( { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } ⊆ ∅ → { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } = ∅ )
55 53 54 syl ( ¬ 𝐼 ∈ V → { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } = ∅ )
56 29 55 eqtr4d ( ¬ 𝐼 ∈ V → ( ~FG𝐼 ) = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) } )
57 28 56 pm2.61i ( ~FG𝐼 ) = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) }
58 2 57 eqtri = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑦𝐼𝑧 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑦 , 𝑧 ⟩ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ”⟩ ⟩ ) ) }