Metamath Proof Explorer


Theorem efhalfpi

Description: The exponential of _ipi / 2 is i . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion efhalfpi ( exp ‘ ( i · ( π / 2 ) ) ) = i

Proof

Step Hyp Ref Expression
1 picn π ∈ ℂ
2 halfcl ( π ∈ ℂ → ( π / 2 ) ∈ ℂ )
3 efival ( ( π / 2 ) ∈ ℂ → ( exp ‘ ( i · ( π / 2 ) ) ) = ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) )
4 1 2 3 mp2b ( exp ‘ ( i · ( π / 2 ) ) ) = ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) )
5 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
6 sinhalfpi ( sin ‘ ( π / 2 ) ) = 1
7 6 oveq2i ( i · ( sin ‘ ( π / 2 ) ) ) = ( i · 1 )
8 ax-icn i ∈ ℂ
9 8 mulid1i ( i · 1 ) = i
10 7 9 eqtri ( i · ( sin ‘ ( π / 2 ) ) ) = i
11 5 10 oveq12i ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) = ( 0 + i )
12 8 addid2i ( 0 + i ) = i
13 11 12 eqtri ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) = i
14 4 13 eqtri ( exp ‘ ( i · ( π / 2 ) ) ) = i