| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
⊢ π ∈ ℂ |
| 2 |
|
halfcl |
⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
| 3 |
|
efival |
⊢ ( ( π / 2 ) ∈ ℂ → ( exp ‘ ( i · ( π / 2 ) ) ) = ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) ) |
| 4 |
1 2 3
|
mp2b |
⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) |
| 5 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 6 |
|
sinhalfpi |
⊢ ( sin ‘ ( π / 2 ) ) = 1 |
| 7 |
6
|
oveq2i |
⊢ ( i · ( sin ‘ ( π / 2 ) ) ) = ( i · 1 ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
8
|
mulridi |
⊢ ( i · 1 ) = i |
| 10 |
7 9
|
eqtri |
⊢ ( i · ( sin ‘ ( π / 2 ) ) ) = i |
| 11 |
5 10
|
oveq12i |
⊢ ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) = ( 0 + i ) |
| 12 |
8
|
addlidi |
⊢ ( 0 + i ) = i |
| 13 |
11 12
|
eqtri |
⊢ ( ( cos ‘ ( π / 2 ) ) + ( i · ( sin ‘ ( π / 2 ) ) ) ) = i |
| 14 |
4 13
|
eqtri |
⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i |