| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efi4p.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 2 |
|
ax-icn |
⊢ i ∈ ℂ |
| 3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 |
1
|
ef4p |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 9 |
7 4 8
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 10 |
4
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 11 |
10
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ∈ ℂ ) |
| 12 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 13 |
|
expcl |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ ) |
| 14 |
4 12 13
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ ) |
| 15 |
|
6cn |
⊢ 6 ∈ ℂ |
| 16 |
|
6re |
⊢ 6 ∈ ℝ |
| 17 |
|
6pos |
⊢ 0 < 6 |
| 18 |
16 17
|
gt0ne0ii |
⊢ 6 ≠ 0 |
| 19 |
|
divcl |
⊢ ( ( ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ∈ ℂ ) |
| 20 |
15 18 19
|
mp3an23 |
⊢ ( ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ∈ ℂ ) |
| 21 |
14 20
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ∈ ℂ ) |
| 22 |
9 11 21
|
addassd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( ( 1 + ( i · 𝐴 ) ) + ( ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) ) |
| 23 |
7
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 24 |
23 4 11 21
|
add4d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) + ( ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) = ( ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) ) |
| 25 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 26 |
|
mulexp |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 27 |
2 25 26
|
mp3an13 |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 28 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
| 29 |
28
|
oveq1i |
⊢ ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) |
| 30 |
29
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) ) |
| 31 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 32 |
31
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 33 |
27 30 32
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 35 |
|
2cn |
⊢ 2 ∈ ℂ |
| 36 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 37 |
|
divneg |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( ( 𝐴 ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 38 |
35 36 37
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → - ( ( 𝐴 ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 39 |
31 38
|
syl |
⊢ ( 𝐴 ∈ ℂ → - ( ( 𝐴 ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 40 |
34 39
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) = - ( ( 𝐴 ↑ 2 ) / 2 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) = ( 1 + - ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 42 |
31
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 43 |
|
negsub |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) → ( 1 + - ( ( 𝐴 ↑ 2 ) / 2 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 44 |
7 42 43
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 + - ( ( 𝐴 ↑ 2 ) / 2 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 45 |
41 44
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 46 |
|
mulexp |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 3 ) = ( ( i ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) |
| 47 |
2 12 46
|
mp3an13 |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 3 ) = ( ( i ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) |
| 48 |
|
i3 |
⊢ ( i ↑ 3 ) = - i |
| 49 |
48
|
oveq1i |
⊢ ( ( i ↑ 3 ) · ( 𝐴 ↑ 3 ) ) = ( - i · ( 𝐴 ↑ 3 ) ) |
| 50 |
47 49
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 3 ) = ( - i · ( 𝐴 ↑ 3 ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) = ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) ) |
| 52 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 53 |
12 52
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 54 |
|
negicn |
⊢ - i ∈ ℂ |
| 55 |
15 18
|
pm3.2i |
⊢ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) |
| 56 |
|
divass |
⊢ ( ( - i ∈ ℂ ∧ ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ) → ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) = ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 57 |
54 55 56
|
mp3an13 |
⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) = ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 58 |
53 57
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) = ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 59 |
|
divcl |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 60 |
15 18 59
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 61 |
53 60
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 62 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 63 |
2 61 62
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 64 |
51 58 63
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) = ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 66 |
61
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 67 |
|
adddi |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ - ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 68 |
2 67
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ - ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 69 |
66 68
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 70 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 71 |
61 70
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 73 |
65 69 72
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 74 |
45 73
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
| 75 |
22 24 74
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
| 76 |
75
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 77 |
6 76
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |