Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
2 |
1
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
3 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
4 |
|
efsub |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
6 |
|
ax-icn |
⊢ i ∈ ℂ |
7 |
1
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
9 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
10 |
6 8 9
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
11 |
1
|
replimd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
12 |
3 10 11
|
mvrladdd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
14 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
15 |
|
relog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) ) |
17 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
20 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
21 |
20
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
22 |
|
eflog |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) ) |
23 |
19 21 22
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ ( abs ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) ) |
24 |
16 23
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ 𝐴 ) ) |
25 |
14 24
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
26 |
5 13 25
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |