| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 2 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 3 |
|
efival |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 4 |
|
efival |
⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) |
| 5 |
3 4
|
eqeqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 6 |
1 2 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 7 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
|
resincl |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 9 |
7 8
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) ) |
| 10 |
|
recoscl |
⊢ ( 𝐵 ∈ ℝ → ( cos ‘ 𝐵 ) ∈ ℝ ) |
| 11 |
|
resincl |
⊢ ( 𝐵 ∈ ℝ → ( sin ‘ 𝐵 ) ∈ ℝ ) |
| 12 |
10 11
|
jca |
⊢ ( 𝐵 ∈ ℝ → ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( sin ‘ 𝐵 ) ∈ ℝ ) ) |
| 13 |
|
cru |
⊢ ( ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) ∧ ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( sin ‘ 𝐵 ) ∈ ℝ ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) |
| 14 |
9 12 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) |
| 15 |
6 14
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) |