Step |
Hyp |
Ref |
Expression |
1 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
6 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
8 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
9 |
3 7 8
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
10 |
|
adddi |
⊢ ( ( i ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
11 |
3 5 9 10
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
12 |
|
ixi |
⊢ ( i · i ) = - 1 |
13 |
12
|
oveq1i |
⊢ ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( - 1 · ( ℑ ‘ 𝐴 ) ) |
14 |
|
mulass |
⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
15 |
3 3 7 14
|
mp3an12i |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
16 |
7
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
17 |
13 15 16
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) = - ( ℑ ‘ 𝐴 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · ( ℜ ‘ 𝐴 ) ) + ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) |
19 |
11 18
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) |
20 |
2 19
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) ) |
22 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
23 |
3 5 22
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
24 |
6
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
25 |
24
|
recnd |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
26 |
|
efadd |
⊢ ( ( ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ∧ - ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
28 |
21 27
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = 1 ↔ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 ) ) |
30 |
|
efcl |
⊢ ( ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
31 |
23 30
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
32 |
|
efcl |
⊢ ( - ( ℑ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
33 |
25 32
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
34 |
31 33
|
absmuld |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) = ( ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) · ( abs ‘ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) ) |
35 |
|
absefi |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) = 1 ) |
36 |
4 35
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) = 1 ) |
37 |
24
|
reefcld |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
38 |
|
efgt0 |
⊢ ( - ( ℑ ‘ 𝐴 ) ∈ ℝ → 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
39 |
24 38
|
syl |
⊢ ( 𝐴 ∈ ℂ → 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
40 |
|
0re |
⊢ 0 ∈ ℝ |
41 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
42 |
40 41
|
mpan |
⊢ ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
43 |
37 39 42
|
sylc |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
44 |
37 43
|
absidd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
45 |
36 44
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) · ( abs ‘ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) = ( 1 · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
46 |
33
|
mulid2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
47 |
34 45 46
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) ) |
48 |
|
fveq2 |
⊢ ( ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 → ( abs ‘ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) |
49 |
47 48
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 ) → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) |
50 |
49
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) ) |
51 |
29 50
|
sylbid |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = 1 → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) ) |
52 |
7
|
negeq0d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = 0 ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
53 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
54 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
55 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
56 |
54 55
|
eqtr4i |
⊢ ( exp ‘ 0 ) = ( abs ‘ 1 ) |
57 |
56
|
eqeq2i |
⊢ ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) |
58 |
|
reef11 |
⊢ ( ( - ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
59 |
24 40 58
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
60 |
57 59
|
bitr3id |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
61 |
52 53 60
|
3bitr4rd |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ↔ 𝐴 ∈ ℝ ) ) |
62 |
51 61
|
sylibd |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = 1 → 𝐴 ∈ ℝ ) ) |
63 |
62
|
imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( exp ‘ ( i · 𝐴 ) ) = 1 ) → 𝐴 ∈ ℝ ) |