Step |
Hyp |
Ref |
Expression |
1 |
|
efif1o.1 |
⊢ 𝐹 = ( 𝑤 ∈ 𝐷 ↦ ( exp ‘ ( i · 𝑤 ) ) ) |
2 |
|
efif1o.2 |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
3 |
|
efif1olem4.3 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
4 |
|
efif1olem4.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
5 |
|
efif1olem4.5 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
6 |
|
efif1olem4.6 |
⊢ 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
7 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → 𝑤 ∈ ℝ ) |
8 |
|
ax-icn |
⊢ i ∈ ℂ |
9 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
10 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( i · 𝑤 ) ∈ ℂ ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝑤 ∈ ℝ → ( i · 𝑤 ) ∈ ℂ ) |
12 |
|
efcl |
⊢ ( ( i · 𝑤 ) ∈ ℂ → ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ) |
13 |
11 12
|
syl |
⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ) |
14 |
|
absefi |
⊢ ( 𝑤 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) |
15 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
16 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
17 |
15 16
|
ax-mp |
⊢ abs Fn ℂ |
18 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑤 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑤 ) ) ) = 1 ) ) |
20 |
13 14 19
|
sylanbrc |
⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
21 |
20 2
|
eleqtrrdi |
⊢ ( 𝑤 ∈ ℝ → ( exp ‘ ( i · 𝑤 ) ) ∈ 𝐶 ) |
22 |
7 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ( exp ‘ ( i · 𝑤 ) ) ∈ 𝐶 ) |
23 |
22 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐶 ) |
24 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐷 ⊆ ℝ ) |
25 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝐷 ) |
26 |
24 25
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℂ ) |
28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝐷 ) |
29 |
24 28
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
30 |
29
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℂ ) |
31 |
27 30
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
32 |
|
2re |
⊢ 2 ∈ ℝ |
33 |
|
pire |
⊢ π ∈ ℝ |
34 |
32 33
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
35 |
34
|
recni |
⊢ ( 2 · π ) ∈ ℂ |
36 |
|
2pos |
⊢ 0 < 2 |
37 |
|
pipos |
⊢ 0 < π |
38 |
32 33 36 37
|
mulgt0ii |
⊢ 0 < ( 2 · π ) |
39 |
34 38
|
gt0ne0ii |
⊢ ( 2 · π ) ≠ 0 |
40 |
|
divcl |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
41 |
35 39 40
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
42 |
31 41
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℂ ) |
43 |
|
absdiv |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
44 |
35 39 43
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
45 |
31 44
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) ) |
46 |
|
0re |
⊢ 0 ∈ ℝ |
47 |
46 34 38
|
ltleii |
⊢ 0 ≤ ( 2 · π ) |
48 |
|
absid |
⊢ ( ( ( 2 · π ) ∈ ℝ ∧ 0 ≤ ( 2 · π ) ) → ( abs ‘ ( 2 · π ) ) = ( 2 · π ) ) |
49 |
34 47 48
|
mp2an |
⊢ ( abs ‘ ( 2 · π ) ) = ( 2 · π ) |
50 |
49
|
oveq2i |
⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( abs ‘ ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) |
51 |
45 50
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) ) |
52 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( 2 · π ) ) |
53 |
35
|
mulid1i |
⊢ ( ( 2 · π ) · 1 ) = ( 2 · π ) |
54 |
52 53
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) |
55 |
31
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
56 |
|
1re |
⊢ 1 ∈ ℝ |
57 |
34 38
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) |
58 |
|
ltdivmul |
⊢ ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
59 |
56 57 58
|
mp3an23 |
⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ∈ ℝ → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
60 |
55 59
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ↔ ( abs ‘ ( 𝑥 − 𝑦 ) ) < ( ( 2 · π ) · 1 ) ) ) |
61 |
54 60
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) / ( 2 · π ) ) < 1 ) |
62 |
51 61
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ) |
63 |
35 39
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) |
64 |
|
ine0 |
⊢ i ≠ 0 |
65 |
8 64
|
pm3.2i |
⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
66 |
|
divcan5 |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
67 |
63 65 66
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
68 |
31 67
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) |
69 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → i ∈ ℂ ) |
70 |
69 27 30
|
subdid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · ( 𝑥 − 𝑦 ) ) = ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) |
71 |
70
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) ) |
72 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
73 |
8 27 72
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · 𝑥 ) ∈ ℂ ) |
74 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) |
75 |
8 30 74
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · 𝑦 ) ∈ ℂ ) |
76 |
|
efsub |
⊢ ( ( ( i · 𝑥 ) ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) ) |
77 |
73 75 76
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( ( i · 𝑥 ) − ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) ) |
78 |
|
efcl |
⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
79 |
75 78
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
80 |
|
efne0 |
⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ≠ 0 ) |
81 |
75 80
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑦 ) ) ≠ 0 ) |
82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
83 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( i · 𝑤 ) = ( i · 𝑥 ) ) |
84 |
83
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑥 ) ) ) |
85 |
|
fvex |
⊢ ( exp ‘ ( i · 𝑥 ) ) ∈ V |
86 |
84 1 85
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
87 |
25 86
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
88 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( i · 𝑤 ) = ( i · 𝑦 ) ) |
89 |
88
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( exp ‘ ( i · 𝑤 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
90 |
|
fvex |
⊢ ( exp ‘ ( i · 𝑦 ) ) ∈ V |
91 |
89 1 90
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
92 |
28 91
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
93 |
82 87 92
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
94 |
79 81 93
|
diveq1bd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( exp ‘ ( i · 𝑥 ) ) / ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) |
95 |
71 77 94
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ) |
96 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑥 − 𝑦 ) ∈ ℂ ) → ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ ) |
97 |
8 31 96
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ ) |
98 |
|
efeq1 |
⊢ ( ( i · ( 𝑥 − 𝑦 ) ) ∈ ℂ → ( ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ↔ ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
99 |
97 98
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( exp ‘ ( i · ( 𝑥 − 𝑦 ) ) ) = 1 ↔ ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
100 |
95 99
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( i · ( 𝑥 − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) |
101 |
68 100
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
102 |
|
nn0abscl |
⊢ ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 ) |
103 |
101 102
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 ) |
104 |
|
nn0lt10b |
⊢ ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) ∈ ℕ0 → ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ↔ ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) ) |
105 |
103 104
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) < 1 ↔ ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) ) |
106 |
62 105
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( abs ‘ ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) ) = 0 ) |
107 |
42 106
|
abs00d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ) |
108 |
|
diveq0 |
⊢ ( ( ( 𝑥 − 𝑦 ) ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
109 |
35 39 108
|
mp3an23 |
⊢ ( ( 𝑥 − 𝑦 ) ∈ ℂ → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
110 |
31 109
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( ( 𝑥 − 𝑦 ) / ( 2 · π ) ) = 0 ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
111 |
107 110
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 − 𝑦 ) = 0 ) |
112 |
27 30 111
|
subeq0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
113 |
112
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
114 |
113
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
115 |
|
dff13 |
⊢ ( 𝐹 : 𝐷 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐷 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
116 |
23 114 115
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1→ 𝐶 ) |
117 |
|
oveq1 |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( 𝑧 − 𝑦 ) = ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) |
118 |
117
|
oveq1d |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
119 |
118
|
eleq1d |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
120 |
119
|
rexbidv |
⊢ ( 𝑧 = ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) → ( ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
121 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑧 ∈ ℝ ∃ 𝑦 ∈ 𝐷 ( ( 𝑧 − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
123 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
124 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
125 |
|
iccssre |
⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) |
126 |
123 124 125
|
mp2an |
⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
127 |
1 2
|
efif1olem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) |
128 |
|
resinf1o |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
129 |
|
f1oeq1 |
⊢ ( 𝑆 = ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) ) |
130 |
6 129
|
ax-mp |
⊢ ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ) |
131 |
128 130
|
mpbir |
⊢ 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
132 |
|
f1ocnv |
⊢ ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) → ◡ 𝑆 : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
133 |
|
f1of |
⊢ ( ◡ 𝑆 : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) → ◡ 𝑆 : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
134 |
131 132 133
|
mp2b |
⊢ ◡ 𝑆 : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) |
135 |
134
|
ffvelrni |
⊢ ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
136 |
127 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
137 |
126 136
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℝ ) |
138 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
139 |
32 137 138
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
140 |
120 122 139
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) |
141 |
|
oveq1 |
⊢ ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) ) |
142 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → i ∈ ℂ ) |
143 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
144 |
143
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
145 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝐷 ⊆ ℝ ) |
146 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
147 |
145 146
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℝ ) |
148 |
147
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℂ ) |
149 |
142 144 148
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) = ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) ) |
150 |
149
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) = ( ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) + ( i · 𝑦 ) ) ) |
151 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
152 |
8 144 151
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ∈ ℂ ) |
153 |
8 148 74
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · 𝑦 ) ∈ ℂ ) |
154 |
152 153
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) − ( i · 𝑦 ) ) + ( i · 𝑦 ) ) = ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
155 |
150 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) = ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
156 |
155
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
157 |
144 148
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ) |
158 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ) |
159 |
8 157 158
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ) |
160 |
|
efadd |
⊢ ( ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) ) |
161 |
159 153 160
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) + ( i · 𝑦 ) ) ) = ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) ) |
162 |
|
2cn |
⊢ 2 ∈ ℂ |
163 |
137
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) |
164 |
|
mul12 |
⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℂ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
165 |
8 162 163 164
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) |
166 |
165
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
167 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ ) → ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
168 |
8 163 167
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
169 |
|
2z |
⊢ 2 ∈ ℤ |
170 |
|
efexp |
⊢ ( ( ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
171 |
168 169 170
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( 2 · ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
172 |
166 171
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) ) |
173 |
137
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
174 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
175 |
174 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ◡ abs “ { 1 } ) ) |
176 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) ) |
177 |
17 176
|
ax-mp |
⊢ ( 𝑥 ∈ ( ◡ abs “ { 1 } ) ↔ ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
178 |
175 177
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 1 ) ) |
179 |
178
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℂ ) |
180 |
179
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
181 |
180
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℜ ‘ ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
182 |
|
cosq14ge0 |
⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
183 |
136 182
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
184 |
179
|
sqrtrege0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 0 ≤ ( ℜ ‘ ( √ ‘ 𝑥 ) ) ) |
185 |
|
sincossq |
⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = 1 ) |
186 |
163 185
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = 1 ) |
187 |
179
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
188 |
187
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( abs ‘ 𝑥 ) ) |
189 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
190 |
|
absexp |
⊢ ( ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
191 |
180 189 190
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
192 |
178
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( abs ‘ 𝑥 ) = 1 ) |
193 |
188 191 192
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = 1 ) |
194 |
180
|
absvalsq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( abs ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
195 |
186 193 194
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
196 |
6
|
fveq1i |
⊢ ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) |
197 |
136
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
198 |
196 197
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
199 |
|
f1ocnvfv2 |
⊢ ( ( 𝑆 : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ∧ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ∈ ( - 1 [,] 1 ) ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
200 |
131 127 199
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
201 |
198 200
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) |
202 |
201
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) = ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
203 |
195 202
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) − ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) − ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) ) |
204 |
163
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
205 |
204
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
206 |
163
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
207 |
206
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
208 |
205 207
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) + ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) − ( ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) ) |
209 |
181
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ℜ ‘ ( √ ‘ 𝑥 ) ) ∈ ℂ ) |
210 |
209
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ∈ ℂ ) |
211 |
202 205
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ∈ ℂ ) |
212 |
210 211
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) + ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) − ( ( ℑ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
213 |
203 208 212
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ↑ 2 ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) ↑ 2 ) ) |
214 |
173 181 183 184 213
|
sq11d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) = ( ℜ ‘ ( √ ‘ 𝑥 ) ) ) |
215 |
201
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) |
216 |
214 215
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
217 |
|
efival |
⊢ ( ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ∈ ℂ → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
218 |
163 217
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( ( cos ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) + ( i · ( sin ‘ ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) ) |
219 |
180
|
replimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( √ ‘ 𝑥 ) = ( ( ℜ ‘ ( √ ‘ 𝑥 ) ) + ( i · ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) |
220 |
216 218 219
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) = ( √ ‘ 𝑥 ) ) |
221 |
220
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( exp ‘ ( i · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ↑ 2 ) = ( ( √ ‘ 𝑥 ) ↑ 2 ) ) |
222 |
172 221 187
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = 𝑥 ) |
223 |
222
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( i · ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) ) ) = 𝑥 ) |
224 |
156 161 223
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = 𝑥 ) |
225 |
153 78
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
226 |
225
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
227 |
224 226
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) · ( exp ‘ ( i · 𝑦 ) ) ) = ( 1 · ( exp ‘ ( i · 𝑦 ) ) ) ↔ 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
228 |
141 227
|
syl5ib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 → 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
229 |
|
efeq1 |
⊢ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ∈ ℂ → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ↔ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
230 |
159 229
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ↔ ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
231 |
|
divcan5 |
⊢ ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
232 |
63 65 231
|
mp3an23 |
⊢ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ∈ ℂ → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
233 |
157 232
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) = ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ) |
234 |
233
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ↔ ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ) ) |
235 |
230 234
|
bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ ↔ ( exp ‘ ( i · ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) ) ) = 1 ) ) |
236 |
91
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) = ( exp ‘ ( i · 𝑦 ) ) ) |
237 |
236
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = ( exp ‘ ( i · 𝑦 ) ) ) ) |
238 |
228 235 237
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
239 |
238
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ∃ 𝑦 ∈ 𝐷 ( ( ( 2 · ( ◡ 𝑆 ‘ ( ℑ ‘ ( √ ‘ 𝑥 ) ) ) ) − 𝑦 ) / ( 2 · π ) ) ∈ ℤ → ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
240 |
140 239
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
241 |
240
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
242 |
|
dffo3 |
⊢ ( 𝐹 : 𝐷 –onto→ 𝐶 ↔ ( 𝐹 : 𝐷 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
243 |
23 241 242
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐷 –onto→ 𝐶 ) |
244 |
|
df-f1o |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐷 –1-1→ 𝐶 ∧ 𝐹 : 𝐷 –onto→ 𝐶 ) ) |
245 |
116 243 244
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐶 ) |