| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efifo.1 |
⊢ 𝐹 = ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 2 |
|
efifo.2 |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
|
recn |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) |
| 5 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( i · 𝑧 ) ∈ ℂ ) |
| 6 |
3 4 5
|
sylancr |
⊢ ( 𝑧 ∈ ℝ → ( i · 𝑧 ) ∈ ℂ ) |
| 7 |
|
efcl |
⊢ ( ( i · 𝑧 ) ∈ ℂ → ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑧 ∈ ℝ → ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ) |
| 9 |
|
absefi |
⊢ ( 𝑧 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑧 ) ) ) = 1 ) |
| 10 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 11 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 12 |
|
fniniseg |
⊢ ( abs Fn ℂ → ( ( exp ‘ ( i · 𝑧 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑧 ) ) ) = 1 ) ) ) |
| 13 |
10 11 12
|
mp2b |
⊢ ( ( exp ‘ ( i · 𝑧 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑧 ) ) ) = 1 ) ) |
| 14 |
8 9 13
|
sylanbrc |
⊢ ( 𝑧 ∈ ℝ → ( exp ‘ ( i · 𝑧 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
| 15 |
14 2
|
eleqtrrdi |
⊢ ( 𝑧 ∈ ℝ → ( exp ‘ ( i · 𝑧 ) ) ∈ 𝐶 ) |
| 16 |
1 15
|
fmpti |
⊢ 𝐹 : ℝ ⟶ 𝐶 |
| 17 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ 𝐶 → 𝐹 Fn ℝ ) |
| 18 |
16 17
|
ax-mp |
⊢ 𝐹 Fn ℝ |
| 19 |
|
frn |
⊢ ( 𝐹 : ℝ ⟶ 𝐶 → ran 𝐹 ⊆ 𝐶 ) |
| 20 |
16 19
|
ax-mp |
⊢ ran 𝐹 ⊆ 𝐶 |
| 21 |
|
df-ima |
⊢ ( 𝐹 “ ( 0 (,] ( 2 · π ) ) ) = ran ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) |
| 22 |
1
|
reseq1i |
⊢ ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = ( ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) ↾ ( 0 (,] ( 2 · π ) ) ) |
| 23 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 24 |
|
2re |
⊢ 2 ∈ ℝ |
| 25 |
|
pire |
⊢ π ∈ ℝ |
| 26 |
24 25
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 27 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 2 · π ) ∈ ℝ ) → ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ ( 2 · π ) ) ) ) |
| 28 |
23 26 27
|
mp2an |
⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ ( 2 · π ) ) ) |
| 29 |
28
|
simp1bi |
⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) → 𝑧 ∈ ℝ ) |
| 30 |
29
|
ssriv |
⊢ ( 0 (,] ( 2 · π ) ) ⊆ ℝ |
| 31 |
|
resmpt |
⊢ ( ( 0 (,] ( 2 · π ) ) ⊆ ℝ → ( ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) ↾ ( 0 (,] ( 2 · π ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) ) |
| 32 |
30 31
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) ↾ ( 0 (,] ( 2 · π ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 33 |
22 32
|
eqtri |
⊢ ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 34 |
33
|
rneqi |
⊢ ran ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = ran ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 35 |
|
0re |
⊢ 0 ∈ ℝ |
| 36 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 37 |
26
|
recni |
⊢ ( 2 · π ) ∈ ℂ |
| 38 |
37
|
addlidi |
⊢ ( 0 + ( 2 · π ) ) = ( 2 · π ) |
| 39 |
38
|
oveq2i |
⊢ ( 0 (,] ( 0 + ( 2 · π ) ) ) = ( 0 (,] ( 2 · π ) ) |
| 40 |
39
|
eqcomi |
⊢ ( 0 (,] ( 2 · π ) ) = ( 0 (,] ( 0 + ( 2 · π ) ) ) |
| 41 |
36 2 40
|
efif1o |
⊢ ( 0 ∈ ℝ → ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –1-1-onto→ 𝐶 ) |
| 42 |
35 41
|
ax-mp |
⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –1-1-onto→ 𝐶 |
| 43 |
|
f1ofo |
⊢ ( ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –1-1-onto→ 𝐶 → ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –onto→ 𝐶 ) |
| 44 |
|
forn |
⊢ ( ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –onto→ 𝐶 → ran ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) = 𝐶 ) |
| 45 |
42 43 44
|
mp2b |
⊢ ran ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) = 𝐶 |
| 46 |
34 45
|
eqtri |
⊢ ran ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = 𝐶 |
| 47 |
21 46
|
eqtri |
⊢ ( 𝐹 “ ( 0 (,] ( 2 · π ) ) ) = 𝐶 |
| 48 |
|
imassrn |
⊢ ( 𝐹 “ ( 0 (,] ( 2 · π ) ) ) ⊆ ran 𝐹 |
| 49 |
47 48
|
eqsstrri |
⊢ 𝐶 ⊆ ran 𝐹 |
| 50 |
20 49
|
eqssi |
⊢ ran 𝐹 = 𝐶 |
| 51 |
|
df-fo |
⊢ ( 𝐹 : ℝ –onto→ 𝐶 ↔ ( 𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶 ) ) |
| 52 |
18 50 51
|
mpbir2an |
⊢ 𝐹 : ℝ –onto→ 𝐶 |