Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝐴 − π ) ∈ ℂ ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − π ) ∈ ℂ ) |
4 |
|
efival |
⊢ ( ( 𝐴 − π ) ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) ) |
6 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
ax-icn |
⊢ i ∈ ℂ |
8 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
10 |
7 8 9
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
11 |
6 10
|
negdid |
⊢ ( 𝐴 ∈ ℂ → - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( - ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
12 |
|
cosmpi |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 − π ) ) = - ( cos ‘ 𝐴 ) ) |
13 |
|
sinmpi |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ ( 𝐴 − π ) ) ) = ( i · - ( sin ‘ 𝐴 ) ) ) |
15 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
16 |
7 8 15
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
17 |
14 16
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ ( 𝐴 − π ) ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
18 |
12 17
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) = ( - ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
19 |
11 18
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ ( 𝐴 − π ) ) + ( i · ( sin ‘ ( 𝐴 − π ) ) ) ) ) |
20 |
5 19
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
21 |
|
efival |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
22 |
21
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( exp ‘ ( i · 𝐴 ) ) = - ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
23 |
20 22
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 𝐴 − π ) ) ) = - ( exp ‘ ( i · 𝐴 ) ) ) |