Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
|
efival |
⊢ ( π ∈ ℂ → ( exp ‘ ( i · π ) ) = ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( exp ‘ ( i · π ) ) = ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) |
4 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
5 |
|
sinpi |
⊢ ( sin ‘ π ) = 0 |
6 |
5
|
oveq2i |
⊢ ( i · ( sin ‘ π ) ) = ( i · 0 ) |
7 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
8 |
6 7
|
eqtri |
⊢ ( i · ( sin ‘ π ) ) = 0 |
9 |
4 8
|
oveq12i |
⊢ ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) = ( - 1 + 0 ) |
10 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
11 |
10
|
addid1i |
⊢ ( - 1 + 0 ) = - 1 |
12 |
9 11
|
eqtri |
⊢ ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) = - 1 |
13 |
3 12
|
eqtri |
⊢ ( exp ‘ ( i · π ) ) = - 1 |