Step |
Hyp |
Ref |
Expression |
1 |
|
eflt |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
4 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
5 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
6 |
|
reefcl |
⊢ ( 𝐵 ∈ ℝ → ( exp ‘ 𝐵 ) ∈ ℝ ) |
7 |
|
lenlt |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℝ ∧ ( exp ‘ 𝐵 ) ∈ ℝ ) → ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ↔ ¬ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ↔ ¬ ( exp ‘ 𝐵 ) < ( exp ‘ 𝐴 ) ) ) |
9 |
3 4 8
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ) ) |