| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eflegeo.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
eflegeo.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 3 |
|
eflegeo.3 |
⊢ ( 𝜑 → 𝐴 < 1 ) |
| 4 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 5 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 7 |
6
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 9 |
|
reeftcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 10 |
1 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) |
| 13 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑘 ) ∈ V |
| 14 |
11 12 13
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 16 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
| 17 |
1 16
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
| 18 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 20 |
19
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝐴 ) |
| 24 |
21 22 23
|
expge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 25 |
19
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ≤ ( ! ‘ 𝑘 ) ) |
| 26 |
17 20 24 25
|
lemulge12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 27 |
19
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ! ‘ 𝑘 ) ) |
| 28 |
|
ledivmul |
⊢ ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → ( ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ↔ ( 𝐴 ↑ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 29 |
17 17 20 27 28
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ↔ ( 𝐴 ↑ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 30 |
26 29
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 31 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 32 |
6
|
efcllem |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 34 |
1 2
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 35 |
34 3
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) |
| 36 |
31 35 15
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |
| 37 |
|
seqex |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ V |
| 38 |
|
ovex |
⊢ ( 1 / ( 1 − 𝐴 ) ) ∈ V |
| 39 |
37 38
|
breldm |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 40 |
36 39
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 41 |
4 5 8 10 15 17 30 33 40
|
isumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) ) |
| 42 |
|
efval |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 43 |
31 42
|
syl |
⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 44 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 45 |
31 44
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 46 |
4 5 15 45 36
|
isumclim |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) = ( 1 / ( 1 − 𝐴 ) ) ) |
| 47 |
46
|
eqcomd |
⊢ ( 𝜑 → ( 1 / ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) ) |
| 48 |
41 43 47
|
3brtr4d |
⊢ ( 𝜑 → ( exp ‘ 𝐴 ) ≤ ( 1 / ( 1 − 𝐴 ) ) ) |