Step |
Hyp |
Ref |
Expression |
1 |
|
dflog2 |
⊢ log = ◡ ( exp ↾ ran log ) |
2 |
1
|
fveq1i |
⊢ ( log ‘ 𝐴 ) = ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) |
3 |
2
|
fveq2i |
⊢ ( ( exp ↾ ran log ) ‘ ( log ‘ 𝐴 ) ) = ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) |
4 |
|
logrncl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) |
5 |
4
|
fvresd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ↾ ran log ) ‘ ( log ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ 𝐴 ) ) ) |
6 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
7 |
|
eff1o2 |
⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) |
8 |
|
f1ocnvfv2 |
⊢ ( ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) = 𝐴 ) |
9 |
7 8
|
mpan |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) = 𝐴 ) |
10 |
6 9
|
sylbir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) = 𝐴 ) |
11 |
3 5 10
|
3eqtr3a |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |