Step |
Hyp |
Ref |
Expression |
1 |
|
tru |
⊢ ⊤ |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝐴 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝐵 ) ) |
5 |
|
ssid |
⊢ ℝ ⊆ ℝ |
6 |
|
reefcl |
⊢ ( 𝑥 ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ ) |
7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( exp ‘ 𝑥 ) ∈ ℝ ) |
8 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
9 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
10 |
8 9
|
resubcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ ) |
11 |
|
posdif |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 0 < ( 𝑦 − 𝑥 ) ) ) |
12 |
11
|
biimp3a |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 < ( 𝑦 − 𝑥 ) ) |
13 |
10 12
|
elrpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ+ ) |
14 |
|
efgt1 |
⊢ ( ( 𝑦 − 𝑥 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ) |
16 |
9
|
reefcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ 𝑥 ) ∈ ℝ ) |
17 |
10
|
reefcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ ) |
18 |
|
efgt0 |
⊢ ( 𝑥 ∈ ℝ → 0 < ( exp ‘ 𝑥 ) ) |
19 |
9 18
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 0 < ( exp ‘ 𝑥 ) ) |
20 |
|
ltmulgt11 |
⊢ ( ( ( exp ‘ 𝑥 ) ∈ ℝ ∧ ( exp ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ ∧ 0 < ( exp ‘ 𝑥 ) ) → ( 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ↔ ( exp ‘ 𝑥 ) < ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
21 |
16 17 19 20
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 1 < ( exp ‘ ( 𝑦 − 𝑥 ) ) ↔ ( exp ‘ 𝑥 ) < ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
22 |
15 21
|
mpbid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ 𝑥 ) < ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) |
23 |
9
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℂ ) |
24 |
10
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
25 |
|
efadd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 − 𝑥 ) ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑦 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ ( 𝑥 + ( 𝑦 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) ) |
27 |
8
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℂ ) |
28 |
23 27
|
pncan3d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( 𝑥 + ( 𝑦 − 𝑥 ) ) = 𝑦 ) |
29 |
28
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ ( 𝑥 + ( 𝑦 − 𝑥 ) ) ) = ( exp ‘ 𝑦 ) ) |
30 |
26 29
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑦 − 𝑥 ) ) ) = ( exp ‘ 𝑦 ) ) |
31 |
22 30
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) → ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) |
32 |
31
|
3expia |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 → ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 < 𝑦 → ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
34 |
2 3 4 5 7 33
|
ltord1 |
⊢ ( ( ⊤ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 𝐵 ↔ ( exp ‘ 𝐴 ) < ( exp ‘ 𝐵 ) ) ) |
35 |
1 34
|
mpan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( exp ‘ 𝐴 ) < ( exp ‘ 𝐵 ) ) ) |