Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( exp ‘ ( i · - 𝐴 ) ) ) |
5 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
6 |
|
efival |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) |
8 |
|
cosneg |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
9 |
|
sinneg |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ - 𝐴 ) ) = ( i · - ( sin ‘ 𝐴 ) ) ) |
11 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
12 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
13 |
1 11 12
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
14 |
10 13
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ - 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
15 |
8 14
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
16 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
17 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
18 |
1 11 17
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
19 |
16 18
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
20 |
15 19
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
21 |
7 20
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
22 |
4 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |