| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efmnd1bas.1 | ⊢ 𝐺  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | efmnd1bas.2 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | efmnd1bas.0 | ⊢ 𝐴  =  { 𝐼 } | 
						
							| 4 |  | snfi | ⊢ { 𝐼 }  ∈  Fin | 
						
							| 5 | 3 4 | eqeltri | ⊢ 𝐴  ∈  Fin | 
						
							| 6 | 1 2 | efmndhash | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐵 )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ♯ ‘ 𝐵 )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) | 
						
							| 8 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ { 𝐼 } ) | 
						
							| 9 |  | hashsng | ⊢ ( 𝐼  ∈  𝑉  →  ( ♯ ‘ { 𝐼 } )  =  1 ) | 
						
							| 10 | 8 9 | eqtrid | ⊢ ( 𝐼  ∈  𝑉  →  ( ♯ ‘ 𝐴 )  =  1 ) | 
						
							| 11 | 10 10 | oveq12d | ⊢ ( 𝐼  ∈  𝑉  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) )  =  ( 1 ↑ 1 ) ) | 
						
							| 12 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 13 |  | 1exp | ⊢ ( 1  ∈  ℤ  →  ( 1 ↑ 1 )  =  1 ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( 1 ↑ 1 )  =  1 | 
						
							| 15 | 11 14 | eqtrdi | ⊢ ( 𝐼  ∈  𝑉  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) )  =  1 ) | 
						
							| 16 | 7 15 | eqtrid | ⊢ ( 𝐼  ∈  𝑉  →  ( ♯ ‘ 𝐵 )  =  1 ) |