| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efmndbas.g | ⊢ 𝐺  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | efmndbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 1 2 | efmndbas | ⊢ 𝐵  =  ( 𝐴  ↑m  𝐴 ) | 
						
							| 4 |  | mapvalg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐴  ∈  V )  →  ( 𝐴  ↑m  𝐴 )  =  { 𝑓  ∣  𝑓 : 𝐴 ⟶ 𝐴 } ) | 
						
							| 5 | 4 | anidms | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ↑m  𝐴 )  =  { 𝑓  ∣  𝑓 : 𝐴 ⟶ 𝐴 } ) | 
						
							| 6 | 3 5 | eqtrid | ⊢ ( 𝐴  ∈  V  →  𝐵  =  { 𝑓  ∣  𝑓 : 𝐴 ⟶ 𝐴 } ) | 
						
							| 7 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 8 | 7 | eqcomi | ⊢ ( Base ‘ ∅ )  =  ∅ | 
						
							| 9 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  ( EndoFMnd ‘ 𝐴 )  =  ∅ ) | 
						
							| 10 | 1 9 | eqtrid | ⊢ ( ¬  𝐴  ∈  V  →  𝐺  =  ∅ ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ¬  𝐴  ∈  V  →  ( Base ‘ 𝐺 )  =  ( Base ‘ ∅ ) ) | 
						
							| 12 | 2 11 | eqtrid | ⊢ ( ¬  𝐴  ∈  V  →  𝐵  =  ( Base ‘ ∅ ) ) | 
						
							| 13 |  | mapprc | ⊢ ( ¬  𝐴  ∈  V  →  { 𝑓  ∣  𝑓 : 𝐴 ⟶ 𝐴 }  =  ∅ ) | 
						
							| 14 | 8 12 13 | 3eqtr4a | ⊢ ( ¬  𝐴  ∈  V  →  𝐵  =  { 𝑓  ∣  𝑓 : 𝐴 ⟶ 𝐴 } ) | 
						
							| 15 | 6 14 | pm2.61i | ⊢ 𝐵  =  { 𝑓  ∣  𝑓 : 𝐴 ⟶ 𝐴 } |