| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efmndtset.g | ⊢ 𝐺  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | efmndplusg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | efmndplusg.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | efmndov | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  𝑌 )  =  ( 𝑋  ∘  𝑌 ) ) | 
						
							| 5 | 1 2 | efmndbasf | ⊢ ( 𝑋  ∈  𝐵  →  𝑋 : 𝐴 ⟶ 𝐴 ) | 
						
							| 6 | 1 2 | efmndbasf | ⊢ ( 𝑌  ∈  𝐵  →  𝑌 : 𝐴 ⟶ 𝐴 ) | 
						
							| 7 |  | fco | ⊢ ( ( 𝑋 : 𝐴 ⟶ 𝐴  ∧  𝑌 : 𝐴 ⟶ 𝐴 )  →  ( 𝑋  ∘  𝑌 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∘  𝑌 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 9 |  | coexg | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∘  𝑌 )  ∈  V ) | 
						
							| 10 | 1 2 | elefmndbas2 | ⊢ ( ( 𝑋  ∘  𝑌 )  ∈  V  →  ( ( 𝑋  ∘  𝑌 )  ∈  𝐵  ↔  ( 𝑋  ∘  𝑌 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ∘  𝑌 )  ∈  𝐵  ↔  ( 𝑋  ∘  𝑌 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 12 | 8 11 | mpbird | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∘  𝑌 )  ∈  𝐵 ) | 
						
							| 13 | 4 12 | eqeltrd | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) |