Description: The monoid of endofunctions on n objects has cardinality n ^ n . (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | efmndhash | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | efmndbas | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) | 
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ Fin → 𝐵 = ( 𝐴 ↑m 𝐴 ) ) | 
| 5 | 4 | fveq2d | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 𝐴 ↑m 𝐴 ) ) ) | 
| 6 | hashmap | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ↑m 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) | |
| 7 | 6 | anidms | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝐴 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) | 
| 8 | 5 7 | eqtrd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐴 ) ) ) |