Metamath Proof Explorer


Theorem efmndmgm

Description: The monoid of endofunctions on a class A is a magma. (Contributed by AV, 28-Jan-2024)

Ref Expression
Hypothesis efmndmgm.g 𝐺 = ( EndoFMnd ‘ 𝐴 )
Assertion efmndmgm 𝐺 ∈ Mgm

Proof

Step Hyp Ref Expression
1 efmndmgm.g 𝐺 = ( EndoFMnd ‘ 𝐴 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 1 2 3 efmndcl ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) )
5 4 rgen2 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝑓 ( +g𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 )
6 1 fvexi 𝐺 ∈ V
7 2 3 ismgm ( 𝐺 ∈ V → ( 𝐺 ∈ Mgm ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝑓 ( +g𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) ) )
8 6 7 ax-mp ( 𝐺 ∈ Mgm ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝑓 ( +g𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) )
9 5 8 mpbir 𝐺 ∈ Mgm