Step |
Hyp |
Ref |
Expression |
1 |
|
efmndmgm.g |
⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
1 2 3
|
efmndcl |
⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) ) |
5 |
4
|
rgen2 |
⊢ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) |
6 |
1
|
fvexi |
⊢ 𝐺 ∈ V |
7 |
2 3
|
ismgm |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ Mgm ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝐺 ∈ Mgm ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) ) |
9 |
5 8
|
mpbir |
⊢ 𝐺 ∈ Mgm |